US10581927B2 - Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media - Google Patents

Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media Download PDF

Info

Publication number
US10581927B2
US10581927B2 US14/255,361 US201414255361A US10581927B2 US 10581927 B2 US10581927 B2 US 10581927B2 US 201414255361 A US201414255361 A US 201414255361A US 10581927 B2 US10581927 B2 US 10581927B2
Authority
US
United States
Prior art keywords
webrtc
media server
api
media
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/255,361
Other versions
US20150304379A1 (en
Inventor
Joel Ezell
John H. Yoakum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avaya Inc
Original Assignee
Avaya Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to AVAYA INC. reassignment AVAYA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EZELL, JOEL, YOAKUM, JOHN H.
Application filed by Avaya Inc filed Critical Avaya Inc
Priority to US14/255,361 priority Critical patent/US10581927B2/en
Publication of US20150304379A1 publication Critical patent/US20150304379A1/en
Assigned to CITIBANK, N.A., AS ADMINISTRATIVE AGENT reassignment CITIBANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AVAYA INC., AVAYA INTEGRATED CABINET SOLUTIONS INC., OCTEL COMMUNICATIONS CORPORATION, VPNET TECHNOLOGIES, INC.
Assigned to VPNET TECHNOLOGIES, INC., AVAYA INC., AVAYA INTEGRATED CABINET SOLUTIONS INC., OCTEL COMMUNICATIONS LLC (FORMERLY KNOWN AS OCTEL COMMUNICATIONS CORPORATION) reassignment VPNET TECHNOLOGIES, INC. BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001 Assignors: CITIBANK, N.A.
Assigned to GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT reassignment GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AVAYA INC., AVAYA INTEGRATED CABINET SOLUTIONS LLC, OCTEL COMMUNICATIONS LLC, VPNET TECHNOLOGIES, INC., ZANG, INC.
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AVAYA INC., AVAYA INTEGRATED CABINET SOLUTIONS LLC, OCTEL COMMUNICATIONS LLC, VPNET TECHNOLOGIES, INC., ZANG, INC.
Publication of US10581927B2 publication Critical patent/US10581927B2/en
Application granted granted Critical
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AVAYA INC., AVAYA INTEGRATED CABINET SOLUTIONS LLC, AVAYA MANAGEMENT L.P., INTELLISIST, INC.
Assigned to WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: AVAYA CABINET SOLUTIONS LLC, AVAYA INC., AVAYA MANAGEMENT L.P., INTELLISIST, INC.
Assigned to AVAYA INTEGRATED CABINET SOLUTIONS LLC, AVAYA HOLDINGS CORP., AVAYA MANAGEMENT L.P., AVAYA INC. reassignment AVAYA INTEGRATED CABINET SOLUTIONS LLC RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026 Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to WILMINGTON SAVINGS FUND SOCIETY, FSB [COLLATERAL AGENT] reassignment WILMINGTON SAVINGS FUND SOCIETY, FSB [COLLATERAL AGENT] INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: AVAYA INC., AVAYA MANAGEMENT L.P., INTELLISIST, INC., KNOAHSOFT INC.
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: AVAYA INC., AVAYA MANAGEMENT L.P., INTELLISIST, INC.
Assigned to AVAYA MANAGEMENT L.P., AVAYA INTEGRATED CABINET SOLUTIONS LLC, INTELLISIST, INC., AVAYA INC. reassignment AVAYA MANAGEMENT L.P. RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 61087/0386) Assignors: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT
Assigned to AVAYA INTEGRATED CABINET SOLUTIONS LLC, AVAYA INC., INTELLISIST, INC., AVAYA MANAGEMENT L.P. reassignment AVAYA INTEGRATED CABINET SOLUTIONS LLC RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 53955/0436) Assignors: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT
Assigned to HYPERQUALITY, INC., ZANG, INC. (FORMER NAME OF AVAYA CLOUD INC.), AVAYA INTEGRATED CABINET SOLUTIONS LLC, VPNET TECHNOLOGIES, INC., INTELLISIST, INC., OCTEL COMMUNICATIONS LLC, HYPERQUALITY II, LLC, AVAYA MANAGEMENT L.P., CAAS TECHNOLOGIES, LLC, AVAYA INC. reassignment HYPERQUALITY, INC. RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001) Assignors: GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT
Assigned to AVAYA LLC reassignment AVAYA LLC (SECURITY INTEREST) GRANTOR'S NAME CHANGE Assignors: AVAYA INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/1813Arrangements for providing special services to substations for broadcast or conference, e.g. multicast for computer conferences, e.g. chat rooms
    • H04L12/1818Conference organisation arrangements, e.g. handling schedules, setting up parameters needed by nodes to attend a conference, booking network resources, notifying involved parties
    • H04L29/06312
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1063Application servers providing network services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • H04L65/401Support for services or applications wherein the services involve a main real-time session and one or more additional parallel real-time or time sensitive sessions, e.g. white board sharing or spawning of a subconference
    • H04L65/4015Support for services or applications wherein the services involve a main real-time session and one or more additional parallel real-time or time sensitive sessions, e.g. white board sharing or spawning of a subconference where at least one of the additional parallel sessions is real time or time sensitive, e.g. white board sharing, collaboration or spawning of a subconference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • H04L65/403Arrangements for multi-party communication, e.g. for conferences
    • H04L65/4038Arrangements for multi-party communication, e.g. for conferences with floor control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • H04L65/403Arrangements for multi-party communication, e.g. for conferences
    • H04L65/4046Arrangements for multi-party communication, e.g. for conferences with distributed floor control
    • H04L65/608
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
    • H04L29/06306
    • H04L29/06326
    • H04L29/08306
    • H04L29/08531
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1059End-user terminal functionalities specially adapted for real-time communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • H04L67/1087Peer-to-peer [P2P] networks using cross-functional networking aspects
    • H04L67/1093Some peer nodes performing special functions

Definitions

  • the technology of the disclosure relates generally to Web Real-Time Communications (WebRTC) interactive flows.
  • WebRTC Web Real-Time Communications
  • Web Real-Time Communications represents an ongoing effort to develop industry standards for integrating real-time communications functionality into web clients, such as web browsers, to enable direct interaction with other web clients.
  • This real-time communications functionality is accessible by web developers via standard markup tags, such as those provided by version 5 of the Hypertext Markup Language (HTML5), and client-side scripting Application Programming Interfaces (APIs) such as JavaScript APIs. More information regarding WebRTC may be found in WebRTC: APIs and RTCWEB Protocols of the HTML5 Real-Time Web,” by Alan B. Johnston and Daniel C. Burnett, 2 nd Edition (2013 Digital Codex LLC), which is incorporated herein in its entirety by reference.
  • HTML5 Hypertext Markup Language
  • APIs Application Programming Interfaces
  • WebRTC provides built-in capabilities for establishing real-time video, audio, and/or data streams in both point-to-point interactive sessions and multi-party interactive sessions.
  • the WebRTC standards are currently under joint development by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF). Information on the current state of WebRTC standards can be found at, e.g., http://www.w3c.org and http://www.ietf.org.
  • two WebRTC clients may retrieve WebRTC-enabled web applications, such as HTML5/JavaScript web applications, from a WebRTC application server. Through the web applications, the two WebRTC clients then engage in dialogue for initiating a peer connection over which the WebRTC interactive flow will pass.
  • the initiation dialogue may include a media negotiation used to reach an agreement on parameters that define characteristics of the WebRTC interactive flow.
  • the WebRTC clients may then establish a direct peer connection with one another, and may begin an exchange of media and/or data packets transporting real-time communications.
  • the peer connection between the WebRTC clients typically employs the Secure Real-time Transport Protocol (SRTP) to transport real-time media flows, and may utilize various other protocols for real-time data interchange.
  • SRTP Secure Real-time Transport Protocol
  • the WebRTC clients may be connected using a “full mesh” topology, in which each WebRTC client participating in the real-time communications establishes a peer connection with every other participating WebRTC client.
  • a full mesh topology may be prohibitively expensive in terms of network bandwidth and/or computing resources.
  • each of the WebRTC clients may connect to a central media server, which mixes and distributes the WebRTC interactive flows to the participating WebRTC clients.
  • the media server may also provide various types of media processing functionality (e.g., inserting announcements into, recording, switching, and/or redirecting WebRTC interactive flows, as non-limiting examples) that are accessible by the WebRTC application.
  • Embodiments disclosed in the detailed description include providing Web Real-Time Communications (WebRTC) media services via WebRTC-enabled media servers.
  • WebRTC-enabled media servers provides media services by implementing a standard WebRTC client application programming interface (API).
  • the WebRTC-enabled media server provides a scripting engine, a WebRTC functionality provider, and a control API for accessing a functionality of the WebRTC functionality provider.
  • the WebRTC-enabled media server receives a stream establishment application from a WebRTC application server.
  • the stream establishment application may comprise one or more JavaScript web applications, as a non-limiting example.
  • the WebRTC-enabled media server uses the stream establishment application to establish WebRTC interactive flows with multiple WebRTC clients, and applies a media service to one or more of the WebRTC interactive flows to generate one or more media server flows.
  • the one or more media server flows is then provided to one or more of the WebRTC clients.
  • the media service may be applied to the one or more WebRTC interactive flows in response to media server commands that the WebRTC-enabled media server receives from the WebRTC application server via the control API.
  • the WebRTC-enabled media server may also generate media server events as a result of applying the media service, and may provide the media server events to the WebRTC application server via the control API. In this manner, media processing functionality of the WebRTC-enabled media server may be accessed by the WebRTC application server through the use of interfaces familiar to WebRTC application developers.
  • a system for providing WebRTC media services includes at least one communications interface and a WebRTC-enabled media server.
  • the WebRTC-enabled media server comprises a scripting engine and a WebRTC functionality provider, and is communicatively coupled to a WebRTC application server and a plurality of WebRTC clients via the at least one communications interface.
  • the WebRTC-enabled media server is configured to provide a control API for accessing a functionality of the WebRTC functionality provider.
  • the WebRTC-enabled media server is also configured to receive, from the WebRTC application server, a stream establishment application.
  • the WebRTC-enabled media server is additionally configured to establish, via the stream establishment application, a plurality of WebRTC interactive flows associated with corresponding ones of the plurality of WebRTC clients.
  • the WebRTC-enabled media server is also configured to apply a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows.
  • the WebRTC-enabled media server is additionally configured to provide the one or more media server flows to one or more of the plurality of WebRTC clients.
  • a method for providing WebRTC media services comprises providing, by a WebRTC-enabled media server executing on a computing device, a control API for accessing a functionality of a WebRTC functionality provider of the WebRTC-enabled media server.
  • the method also comprises receiving, by the WebRTC-enabled media server, a stream establishment application from a WebRTC application server.
  • the method further comprises establishing, via the stream establishment application, a plurality of WebRTC interactive flows associated with corresponding ones of a plurality of WebRTC clients.
  • the method also comprises applying a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows.
  • the method additionally comprises providing the one or more media server flows to one or more of the plurality of WebRTC clients.
  • a non-transitory computer-readable medium having stored thereon computer-executable instructions to cause a processor to implement a method for providing WebRTC media services comprises providing, by a WebRTC-enabled media server, a control API for accessing a functionality of a WebRTC functionality provider of the WebRTC-enabled media server.
  • the method implemented by the computer-executable instructions also comprises receiving, by the WebRTC-enabled media server, a stream establishment application from a WebRTC application server.
  • the method implemented by the computer-executable instructions further comprises establishing, via the stream establishment application, a plurality of WebRTC interactive flows associated with corresponding ones of a plurality of WebRTC clients.
  • the method implemented by the computer-executable instructions also comprises applying a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows.
  • the method implemented by the computer-executable instructions additionally comprises providing the one or more media server flows to one or more of the plurality of WebRTC clients.
  • FIG. 1 is a conceptual diagram illustrating a Web Real-Time Communications (WebRTC) interactive session between two WebRTC clients using a WebRTC-enabled media server;
  • WebRTC Web Real-Time Communications
  • FIG. 2 is a flowchart illustrating exemplary operations of the WebRTC-enabled media server of FIG. 1 for providing WebRTC media services;
  • FIG. 3 is a flowchart illustrating further exemplary operations, in addition to the operations of FIG. 2 , for providing WebRTC media services via the WebRTC-enabled media server of FIG. 1 ;
  • FIG. 4 is a diagram illustrating exemplary communications flows within an exemplary system including the WebRTC-enabled media server of FIG. 1 ;
  • FIG. 5 is a block diagram of an exemplary processor-based system that may include the WebRTC-enabled media server of FIG. 1 .
  • Embodiments disclosed in the detailed description include providing Web Real-Time Communications (WebRTC) media services via WebRTC-enabled media servers.
  • WebRTC-enabled media servers provides media services by implementing a standard WebRTC client application programming interface (API).
  • the WebRTC-enabled media server provides a scripting engine, a WebRTC functionality provider, and a control API for accessing a functionality of the WebRTC functionality provider.
  • the WebRTC-enabled media server receives a stream establishment application from a WebRTC application server.
  • the stream establishment application may comprise one or more JavaScript web applications, as a non-limiting example.
  • the WebRTC-enabled media server uses the stream establishment application to establish WebRTC interactive flows with multiple WebRTC clients, and applies a media service to one or more of the WebRTC interactive flows to generate one or more media server flows.
  • the one or more media server flows is then provided to one or more of the WebRTC clients.
  • the media service may be applied to the one or more WebRTC interactive flows in response to media server commands that the WebRTC-enabled media server receives from the WebRTC application server via the control API.
  • the WebRTC-enabled media server may also generate media server events as a result of applying the media service, and may provide the media server events to the WebRTC application server via the control API. In this manner, media processing functionality of the WebRTC-enabled media server may be accessed by the WebRTC application server through the use of interfaces familiar to WebRTC application developers.
  • a system for providing WebRTC media services includes at least one communications interface and a WebRTC-enabled media server.
  • the WebRTC-enabled media server comprises a scripting engine and a WebRTC functionality provider, and is communicatively coupled to a WebRTC application server and a plurality of WebRTC clients via the at least one communications interface.
  • the WebRTC-enabled media server is configured to provide a control API for accessing a functionality of the WebRTC functionality provider.
  • the WebRTC-enabled media server is also configured to receive, from the WebRTC application server, a stream establishment application.
  • the WebRTC-enabled media server is additionally configured to establish, via the stream establishment application, a plurality of WebRTC interactive flows associated with corresponding ones of the plurality of WebRTC clients.
  • the WebRTC-enabled media server is also configured to apply a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows.
  • the WebRTC-enabled media server is additionally configured to provide the one or more media server flows to one or more of the plurality of WebRTC clients.
  • FIG. 1 illustrates an exemplary WebRTC interactive system 10 for providing WebRTC media services via WebRTC-enabled media servers as disclosed herein.
  • the exemplary WebRTC interactive system 10 provides a WebRTC-enabled media server 12 that executes on a computing device 14 .
  • the WebRTC-enabled media server 12 is configured to establish WebRTC interactive sessions with WebRTC peers in a manner similar to a conventional WebRTC client, and is further configured to provide media services to a WebRTC application server 16 .
  • a “WebRTC interactive session” refers to operations for carrying out a WebRTC offer/answer exchange, establishing a peer connection, and commencing a WebRTC interactive flow between two or more endpoints (e.g., two or more WebRTC clients).
  • a “WebRTC interactive flow,” as disclosed herein, refers to an interactive media flow and/or an interactive data flow that passes between or among two or more endpoints according to the WebRTC standards and protocols known in the art.
  • an interactive media flow constituting a WebRTC interactive flow may comprise a real-time audio stream and/or a real-time video stream, or other real-time media or data streams.
  • Data and/or media comprising a WebRTC interactive flow may be collectively referred to herein as “content.”
  • a WebRTC interactive flow 18 is shown in FIG. 1 as passing between the computing device 14 and a computing device 20
  • a WebRTC interactive flow 22 is shown as passing between the computing device 14 and a computing device 24
  • the computing devices 14 , 20 , and 24 may all be located within the same public or private network, or may be located within separate, communicatively coupled public or private networks.
  • Some embodiments of the WebRTC interactive system 10 of FIG. 1 may provide that each of the computing devices 14 , 20 , and 24 may be any computing device having network communications capabilities, such as a smartphone, a tablet computer, a dedicated web appliance, a media server, a desktop or server computer, or a purpose-built communications device, as non-limiting examples.
  • the computing devices 14 , 20 , and 24 include communications interfaces 26 , 28 , and 30 , respectively, for connecting the computing devices 14 , 20 , and 24 to one or more public and/or private networks.
  • the elements of the computing devices 14 , 20 , and 24 may be distributed across more than one computing device 14 , 20 , and 24 .
  • the computing devices 20 and 24 of FIG. 1 include WebRTC clients 32 and 34 , respectively.
  • Each of the WebRTC clients 32 and 34 may be a WebRTC-enabled web browser application, a dedicated communications application, a mobile application, or an interface-less application, such as a daemon or service application, as non-limiting examples.
  • the WebRTC client 32 comprises a scripting engine 36 and a WebRTC functionality provider 38 .
  • the scripting engine 36 enables client-side applications written in a scripting language, such as JavaScript, to be executed within the WebRTC client 32 .
  • the scripting engine 36 also provides an API to facilitate communications with other functionality providers within the WebRTC client 32 and/or the computing device 20 , and/or with other web clients, user devices, or web servers.
  • the WebRTC functionality provider 38 implements the protocols, codecs, and APIs necessary to enable real-time communications via WebRTC.
  • the scripting engine 36 and the WebRTC functionality provider 38 are communicatively coupled via a set of defined APIs, as indicated by bidirectional arrow 40 .
  • the WebRTC client 34 also includes a scripting engine 42 and a WebRTC functionality provider 44 for providing functionality similar to that of the scripting engine 36 and the WebRTC functionality provider 38 , respectively, of the WebRTC client 32 .
  • the scripting engine 42 and the WebRTC functionality provider 44 of the WebRTC client 34 are communicatively coupled via a set of defined APIs, as indicated by bidirectional arrow 46 .
  • the WebRTC client 32 and the WebRTC client 34 each downloads a WebRTC application 48 from the WebRTC application server 16 (e.g., via Hyper Text Transfer Protocol (HTTP)/Hyper Text Transfer Protocol Secure (HTTPS) connections).
  • the WebRTC application 48 may comprise an HTML5/JavaScript web application that provides a rich user interface using HTML5, and uses JavaScript to handle user input and to communicate with the WebRTC application server 16 . It is to be understood that the WebRTC application 48 may comprise multiple, interoperable WebRTC applications tailored for specific characteristics (such as operating systems and/or platforms) of the WebRTC clients 32 and 34 .
  • the WebRTC client 32 and the WebRTC client 34 engage in an initiation dialogue (not shown) with one another to negotiate media types and capabilities of the desired WebRTC interactive session.
  • the initiation dialogue may include a WebRTC offer/answer exchange in which WebRTC session description objects (not shown) are exchanged between the WebRTC clients 32 and 34 via the WebRTC application server 16 .
  • a WebRTC interactive flow is established directly between the WebRTC client 32 and the WebRTC client 34 via a peer connection.
  • the WebRTC client 32 and the WebRTC client 34 may each connect to a conventional media server (not shown).
  • the conventional media server may mix and distribute WebRTC interactive flows to the WebRTC clients 32 and 34 , and may provide other media processing functionality such as inserting announcements into, recording, and/or redirecting the WebRTC interactive flows, as non-limiting examples.
  • a conventional media server may require developers to be familiar with control interfaces based on protocols (e.g., Session Initiation Protocol (SIP)) that may be outside the scope of expertise of many WebRTC application developers.
  • protocols e.g., Session Initiation Protocol (SIP)
  • the WebRTC-enabled media server 12 is provided to establish WebRTC interactive sessions with WebRTC peers in a manner similar to a conventional WebRTC client, and to provide media services to the WebRTC application server 16 using an interface more accessible to WebRTC application developers.
  • the WebRTC-enabled media server 12 provides a scripting engine 50 and a media handling functionality provider 52 .
  • the WebRTC-enabled media server 12 also provides a control API 54 , through which a functionality of the media handling functionality provider 52 may be accessed and controlled.
  • the scripting engine 50 and the media handling functionality provider 52 may be communicatively coupled to each other via the control API 54 as indicated by bidirectional arrows 56 and 58 .
  • the scripting engine 50 of the WebRTC-enabled media server 12 provides functionality corresponding to that of the scripting engines 36 and 42 of the WebRTC clients 32 and 34 , respectively.
  • the media handling functionality provider 52 includes a WebRTC functionality provider 60 , which provides functionality corresponding to that of the WebRTC functionality providers 38 and 44 of the WebRTC clients 32 and 34 , respectively.
  • the media handling functionality provider 52 also provides media processing functionality similar to that provided by conventional media servers.
  • the control API 54 defines one or more media server commands 62 that the WebRTC-enabled media server 12 may receive from the WebRTC application server 16 to apply media services to WebRTC interactive flows.
  • the control API 54 may further specify one or more media server events 64 that the WebRTC-enabled media server 12 may generate to notify the WebRTC application server 16 of relevant occurrences during or resulting from applying the media services.
  • the control API 54 may comprise a Web-accessible API configured to receive the media server commands 62 from and/or provide the media server events 64 to the WebRTC application server 16 .
  • the control API 54 may include a Representational State Transfer (REST) API and/or a JavaScript API.
  • the control API 54 may receive the media server commands 62 and/or provide the media server events 64 via a media control application 65 executed by the scripting engine 50 .
  • the WebRTC-enabled media server 12 is configured to receive a stream establishment application 66 from the WebRTC application server 16 , as indicated by arrow 68 . Some embodiments may provide that the WebRTC-enabled media server 12 also receives the media control application 65 from the WebRTC application server 16 , as indicated by arrow 69 .
  • the stream establishment application 66 and/or the media control application 65 may each comprise a JavaScript application, as a non-limiting example. In some embodiments, the stream establishment application 66 and/or the media control application 65 are downloaded upon startup of the WebRTC-enabled media server 12 , and/or upon association of the WebRTC-enabled media server 12 with the WebRTC application server 16 .
  • Some embodiments may provide that a same version of the stream establishment application 66 and/or the media control application 65 may be used by more than one WebRTC application server 16 , and/or a custom version of the stream establishment application 66 and/or the media control application 65 may be used by one or more WebRTC application servers 16 .
  • the download location for the stream establishment application 66 and/or the media control application 65 may be specified by a value set within the WebRTC-enabled media server 12 prior to or during execution of the WebRTC-enabled media server 12 , or may be set by a web service invocation from the WebRTC application server 16 .
  • the stream establishment application 66 provides functionality for establishing the WebRTC interactive flows 18 and 22 between the WebRTC-enabled media server 12 and the WebRTC clients 32 and 34 .
  • the stream establishment application 66 may also be downloaded from the WebRTC application server 16 by the WebRTC client 32 and the WebRTC client 34 as part of the WebRTC application 48 .
  • the stream establishment application 66 downloaded by the WebRTC clients 32 and 34 and the WebRTC-enabled media server 12 may be the same application across all platforms and devices, or different platform- or device-specific versions of the stream establishment application 66 may be provided.
  • the stream establishment application 66 may be downloaded by the WebRTC clients 32 and 34 each time a WebRTC interactive session is to be established.
  • the WebRTC-enabled media server 12 may interact with the WebRTC clients 32 and 34 to establish the WebRTC interactive flows 18 and 22 .
  • the stream establishment application 66 downloaded by the WebRTC clients 32 and 34 as part of the WebRTC application 48 , directs the WebRTC clients 32 and 34 to engage in initiation dialogues 70 and 72 , respectively, with the WebRTC-enabled media server 12 .
  • the scripting engine 50 of the WebRTC-enabled media server 12 employs the stream establishment application 66 to establish the WebRTC interactive flows 18 and 22 with the respective WebRTC clients 32 and 34 .
  • the WebRTC-enabled media server 12 may provide support for standard transport mechanisms (e.g., WebSockets, as a non-limiting example), as well as mechanisms required by WebRTC specifications such as Interactive Connectivity Establishment (ICE), Session Traversal Utilities for Network Address Translation (STUN), and/or Traversal Using Relays around Network Address Translation (TURN).
  • WebSockets as a non-limiting example
  • ICE Interactive Connectivity Establishment
  • STUN Session Traversal Utilities for Network Address Translation
  • TURN Traversal Using Relays around Network Address Translation
  • the media handling functionality provider 52 of the WebRTC-enabled media server 12 may apply a media service to content of incoming media and/or data streams received from one or more of the WebRTC interactive flows 18 and 22 to generate one or more of outgoing media server flows 74 and 76 .
  • the media handling functionality provider 52 may be controlled by the WebRTC application server 16 via the control API 54 , and/or may be controlled by the media control application 65 executed by the scripting engine 50 of the WebRTC-enabled media server 12 .
  • applying the media service may include mixing the WebRTC interactive flows 18 and 22 , switching the media server flows 74 and 76 , inserting content into one or more of the WebRTC interactive flows 18 and 22 , recording one or more of the WebRTC interactive flows 18 and 22 , redirecting one or more of the WebRTC interactive flows 18 and 22 , performing text-to-speech conversion on one or more of the WebRTC interactive flows 18 and 22 , and/or performing speech recognition on one or more of the WebRTC interactive flows 18 and 22 .
  • operation of the WebRTC functionality provider 60 of the WebRTC-enabled media server 12 may be controlled by the media server command(s) 62 received from the WebRTC application server 16 .
  • the media server command(s) 62 may be received via an HTTP request (such as an HTTP GET request) and/or via WebSockets signaling.
  • the media server command(s) 62 may comprise a REST API invocation received by the control API 54 from the WebRTC application server 16 .
  • the media server command(s) 62 may comprise a JavaScript API invocation received by the media control application 65 from the WebRTC application server 16 and relayed to the control API 54 .
  • Some embodiments may provide that the WebRTC functionality provider 60 of the WebRTC-enabled media server 12 generates the media server event(s) 64 as a result of applying the media service to the WebRTC interactive flows 18 and 22 .
  • the WebRTC-enabled media server 12 may notify the WebRTC application server 16 that an announcement has completed, or that input of dual-tone multi-frequency (DTMF) digits has been detected.
  • the media server event(s) 64 may be sent to the WebRTC application server 16 via an HTTP request (such as an HTTP POST request) or by WebSockets, as non-limiting examples.
  • the media server event(s) 64 may be provided to the WebRTC application server 16 via a REST API by the control API 54 .
  • the media server event(s) 64 may be provided to the WebRTC application server 16 via a JavaScript API of the media control application 65 .
  • the specific content and format of the media server command(s) 62 and the media server event(s) 64 may be determined by the control API 54 and/or may specified by the media control application 65 .
  • the control API 54 may accept standard WebRTC objects, such as a PeerConnection object, as parameters.
  • the control API 54 may be based on APIs such as Java Specification Request (JSR) 309 , as a non-limiting example.
  • JSR Java Specification Request
  • the WebRTC-enabled media server 12 may provide media services concurrently to multiple WebRTC application servers 16 .
  • the WebRTC-enabled media server 12 may receive, and concurrently execute, a unique stream establishment application 66 and/or a unique media control application 65 for each of multiple WebRTC application servers 16 .
  • the WebRTC-enabled media server 12 may provide a separate instance of the scripting engine 50 and/or the media handling functionality provider 52 for each of multiple concurrent WebRTC interactive sessions.
  • FIG. 2 To generally describe exemplary operations of the WebRTC-enabled media server 12 of FIG. 1 for providing WebRTC media services, FIG. 2 is provided. For the sake of clarity, elements of FIG. 1 are referenced in describing FIG. 2 .
  • operations begin with the WebRTC-enabled media server 12 , executing on the computing device 14 , providing the control API 54 for accessing a functionality of the WebRTC functionality provider 60 of the WebRTC-enabled media server 12 (block 77 ).
  • the control API 54 specifies the media server command(s) 62 that may be received from the WebRTC application server 16 , as well as the media server event(s) 64 that may be generated by the WebRTC-enabled media server 12 .
  • the WebRTC-enabled media server 12 then receives the stream establishment application 66 from the WebRTC application server 16 (block 78 ).
  • the stream establishment application 66 enables the WebRTC-enabled media server 12 to establish the WebRTC interactive flows 18 and 22 with the WebRTC clients 32 and 34 .
  • the WebRTC-enabled media server 12 next establishes a plurality of WebRTC interactive flows 18 , 22 , each of which is associated with a respective one of a plurality of WebRTC clients 32 , 34 , via the stream establishment application 66 (block 80 ).
  • the WebRTC interactive flows 18 and 22 may be established in response to the initiation dialogues 70 and 72 that are initiated by the WebRTC clients 32 and 34 , respectively, or in response to initiation dialogues (not shown) that are initiated by the WebRTC-enabled media server 12 .
  • Some embodiments may provide that the initiation dialogues 70 and 72 are initiated at the direction of the WebRTC application 48 and/or the WebRTC application server 16 .
  • the WebRTC-enabled media server 12 applies a media service to one or more of the plurality of WebRTC interactive flows 18 , 22 to generate one or more media server flows 74 , 76 (block 82 ).
  • the media server flows 74 , 76 may include data from either or both of the WebRTC interactive flows 18 , 22 , and/or additional content (such as an announcement) inserted into the WebRTC interactive flows 18 , 22 by the WebRTC-enabled media server 12 .
  • the WebRTC-enabled media server 12 then provides the one or more media server flows 74 , 76 to one or more of the plurality of WebRTC clients 32 , 34 (block 84 ). In this manner, the WebRTC-enabled media server 12 may provide a usable, intuitive interface to WebRTC application developers for providing media functionality to the WebRTC application server 16 .
  • FIG. 3 is a flowchart illustrating optional exemplary operations, in addition to the operations of FIG. 2 , for providing WebRTC media services via the WebRTC-enabled media server 12 of FIG. 1 .
  • the WebRTC-enabled media server 12 may receive, via the control API 54 , a media server command 62 from the WebRTC application server 16 (block 86 ).
  • the media server command 62 may be received via an HTTP request (such as an HTTP GET request) and/or via WebSockets signaling, and may indicate a media service requested by the WebRTC application server 16 .
  • the media server command 62 may be received via a REST API invocation and/or a JavaScript API invocation.
  • the WebRTC-enabled media server 12 may thus apply a media service indicated by the media server command 62 to one or more of the WebRTC interactive flows 18 , 22 (block 88 ).
  • the WebRTC-enabled media server 12 may also generate a media server event 64 as a result of applying the media service to the one or more of the plurality of WebRTC interactive flows 18 , 22 (block 90 ). For instance, the WebRTC-enabled media server 12 may generate a media server event 64 to notify the WebRTC application server 16 that an announcement has completed, or that input of DTMF digits has been detected. In some embodiments, the media server event 64 may be provided via a REST API and/or a JavaScript API. The WebRTC-enabled media server 12 may then provide the media server event 64 to the WebRTC application server 16 via the control API 54 (block 92 ).
  • FIG. 4 To illustrate exemplary communications flows during the establishment of a WebRTC interactive session and the provision of media services using the WebRTC-enabled media server 12 of FIG. 1 , FIG. 4 is provided.
  • the scripting engine 36 and the WebRTC functionality provider 38 of the WebRTC client 32 , the WebRTC application server 16 , the scripting engine 50 , the control API 54 , and the WebRTC functionality provider 60 of the WebRTC-enabled media server 12 , and the scripting engine 42 and the WebRTC functionality provider 44 of the WebRTC client 34 are each represented by vertical dotted lines.
  • the WebRTC client 32 and the WebRTC client 34 have each downloaded a WebRTC-enabled application, such as the WebRTC application 48 , from the WebRTC application server 16 . It is to be further understood that the WebRTC-enabled application downloaded by each of the WebRTC clients 32 and 34 includes the stream establishment application 66 .
  • the scripting engine 50 of the WebRTC-enabled media server 12 first downloads the stream establishment application 66 from the WebRTC application server 16 .
  • the scripting engine 50 may also optionally download the media control application 65 from the WebRTC application server 16 .
  • the scripting engine 50 may download the stream establishment application 66 and/or the media control application 65 based on a download location set within the WebRTC-enabled media server 12 prior to or during execution of the WebRTC-enabled media server 12 , or set by a web service invocation (not shown) from the WebRTC application server 16 .
  • the WebRTC-enabled media server 12 then creates an open channel 94 to the WebRTC application server 16 , through which the WebRTC application server 16 may request media services.
  • the open channel 94 may be created using an HTTP request (such as an HTTP GET request), or may be created using WebSockets. It is to be understood that multiple open channels 94 may be maintained by the WebRTC-enabled media server 12 , thus enabling multiple concurrent media service requests to be handled.
  • the establishment of a WebRTC interactive session between the WebRTC client 32 and the WebRTC-enabled media server 12 begins with the scripting engine 36 of the WebRTC client 32 sending a WebRTC session description object to the scripting engine 50 of the WebRTC-enabled media server 12 via an HTTPS connection.
  • the WebRTC session description object is a Session Description Protocol (SDP) object, and is referred to as SDP Object A (arrow 96 ).
  • SDP Object A represents the “offer” in a WebRTC offer/answer exchange, and specifies the media types and capabilities that the WebRTC client 32 supports and prefers for use in the WebRTC interactive session.
  • the scripting engine 50 of the WebRTC-enabled media server 12 After the scripting engine 50 of the WebRTC-enabled media server 12 receives the SDP Object A from the WebRTC client 32 , the scripting engine 50 sends a WebRTC session description object in response, referred to as SDP Object B (arrow 98 ), via HTTPS to the WebRTC client 32 .
  • the SDP Object B in this example represents the “answer” in the WebRTC offer/answer exchange.
  • the WebRTC interactive flow 18 is then established between the WebRTC client 32 and the WebRTC-enabled media server 12 . Establishing the WebRTC interactive flow 18 may include “hole punching” to determine the best way to establish direct communications, as well as key negotiations to establish secure connections. It is to be understood that establishing the WebRTC interactive flow 18 may be accomplished through operations of the stream establishment application 66 executed by the scripting engine 50 of the WebRTC-enabled media server 12 and the scripting engine 36 of the WebRTC client 32
  • a WebRTC interactive session is also established between the WebRTC client 34 and the WebRTC-enabled media server 12 . It is to be understood that operations for establishing a WebRTC interactive session between the WebRTC client 34 and the WebRTC-enabled media server 12 may occur before, concurrently with, or after the establishment of the WebRTC interactive flow 18 between the WebRTC client 32 and the WebRTC-enabled media server 12 .
  • the scripting engine 42 of the WebRTC client 34 sends a WebRTC session description object to the scripting engine 50 of the WebRTC-enabled media server 12 via an HTTPS connection.
  • the WebRTC session description object in this example is a SDP object referred to as SDP Object C (arrow 100 ), and specifies the media types and capabilities supported and/or preferred for use by the WebRTC client 34 .
  • the scripting engine 50 sends a WebRTC session description object, referred to as SDP Object D (arrow 102 ), via HTTPS to the WebRTC client 34 .
  • the SDP Object D represents the “answer” in the WebRTC offer/answer exchange.
  • the WebRTC interactive flow 22 is then established between the WebRTC client 34 and the WebRTC-enabled media server 12 . It is to be understood that establishing the WebRTC interactive flow 22 may be accomplished through operations of the stream establishment application 66 being executed by the scripting engine 50 of the WebRTC-enabled media server 12 and the scripting engine 42 of the WebRTC client 34 .
  • the WebRTC-enabled media server 12 After the WebRTC interactive flows 18 and 22 are established, the WebRTC-enabled media server 12 generates one or more media server flows 74 and 76 by applying media services to one or more of the WebRTC interactive flows 18 and 22 , and provides the one or more media server flows 74 and 76 to the WebRTC clients 32 and 34 , respectively.
  • applying media services may include mixing the WebRTC interactive flows 18 and 22 , switching the media server flows 74 and 76 , inserting content into one or more of the WebRTC interactive flows 18 and 22 , recording one or more of the WebRTC interactive flows 18 and 22 , redirecting one or more of the WebRTC interactive flows 18 and 22 , performing text-to-speech conversion on one or more of the WebRTC interactive flows 18 and 22 , and/or performing speech recognition on one or more of the WebRTC interactive flows 18 and 22 .
  • the WebRTC functionality provider 60 may receive the media server command(s) 62 from the WebRTC application server 16 via the control API 54 .
  • the media server command(s) 62 may be routed through the media control application 65 executed by the scripting engine 50 .
  • the WebRTC application server 16 may indicate media services to be applied to the WebRTC interactive flows 18 and/or 22 , and thus may selectively control, monitor, and/or modify a content of the media server flows 74 and/or 76 provided to the WebRTC clients 32 and 34 .
  • the WebRTC-enabled media server 12 may also generate the media server event(s) 64 in response to applying media services to the WebRTC interactive flows 18 and/or 22 .
  • the WebRTC-enabled media server 12 may generate media server event(s) 64 to notify the WebRTC application server 16 that an announcement has completed, or that input of DTMF digits has been detected.
  • the media server event(s) 64 may then be provided to the WebRTC application server 16 by the control API 54 .
  • the media server event(s) 64 may be provided via the media control application 65 executed by the scripting engine 50 .
  • FIG. 5 provides a block diagram representation of a processing system 104 in the exemplary form of an exemplary computer system 106 adapted to execute instructions to perform the functions described herein.
  • the processing system 104 may execute instructions to perform the functions of the WebRTC-enabled media server 12 of FIG. 1 .
  • the processing system 104 may comprise the computer system 106 , within which a set of instructions for causing the processing system 104 to perform any one or more of the methodologies discussed herein may be executed.
  • the processing system 104 may be connected (as a non-limiting example, networked) to other machines in a local area network (LAN), an intranet, an extranet, or the Internet.
  • LAN local area network
  • intranet an intranet
  • extranet or the Internet.
  • the processing system 104 may operate in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. While only a single processing system 104 is illustrated, the terms “controller” and “server” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
  • the processing system 104 may be a server, a personal computer, a desktop computer, a laptop computer, a personal digital assistant (PDA), a computing pad, a mobile device, or any other device and may represent, as non-limiting examples, a server or a user's computer.
  • PDA personal digital assistant
  • the exemplary computer system 106 includes a processing device or processor 108 , a main memory 110 (as non-limiting examples, read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), and a static memory 112 (as non-limiting examples, flash memory, static random access memory (SRAM), etc.), which may communicate with each other via a bus 114 .
  • the processing device 108 may be connected to the main memory 110 and/or the static memory 112 directly or via some other connectivity means.
  • the processing device 108 represents one or more processing devices such as a microprocessor, central processing unit (CPU), or the like. More particularly, the processing device 108 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or processors implementing a combination of instruction sets.
  • the processing device 108 is configured to execute processing logic in instructions 116 and/or cached instructions 118 for performing the operations and steps discussed herein.
  • the computer system 106 may further include a communications interface in the form of a network interface device 120 . It also may or may not include an input 122 to receive input and selections to be communicated to the computer system 106 when executing the instructions 116 , 118 . It also may or may not include an output 124 , including but not limited to display(s) 126 .
  • the display(s) 126 may be a video display unit (as non-limiting examples, a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (as a non-limiting example, a keyboard), a cursor control device (as a non-limiting example, a mouse), and/or a touch screen device (as a non-limiting example, a tablet input device or screen).
  • a video display unit as non-limiting examples, a liquid crystal display (LCD) or a cathode ray tube (CRT)
  • an alphanumeric input device as a non-limiting example, a keyboard
  • a cursor control device as a non-limiting example, a mouse
  • a touch screen device as a non-limiting example, a tablet input device or screen
  • the computer system 106 may or may not include a data storage device 128 that includes using drive(s) 130 to store the functions described herein in a computer-readable medium 132 , on which is stored one or more sets of instructions 134 (e.g., software) embodying any one or more of the methodologies or functions described herein.
  • the functions can include the methods and/or other functions of the processing system 104 , a participant user device, and/or a licensing server, as non-limiting examples.
  • the one or more sets of instructions 134 may also reside, completely or at least partially, within the main memory 110 and/or within the processing device 108 during execution thereof by the computer system 106 .
  • the main memory 110 and the processing device 108 also constitute machine-accessible storage media.
  • the instructions 116 , 118 , and/or 134 may further be transmitted or received over a network 136 via the network interface device 120 .
  • the network 136 may be an intra-network or an inter-network.
  • machine-accessible storage medium should be taken to include a single medium or multiple media (as non-limiting examples, a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions 134 .
  • the term “machine-accessible storage medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions for execution by the machine, and that cause the machine to perform any one or more of the methodologies disclosed herein.
  • the term “machine-accessible storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • EPROM Electrically Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • registers a hard disk, a removable disk, a CD-ROM, or any other form of computer readable medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • the ASIC may reside in a remote station.
  • the processor and the storage medium may reside as discrete components in a remote station, base station, or server.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Information Transfer Between Computers (AREA)
  • Computer And Data Communications (AREA)

Abstract

In one embodiment, a system for providing WebRTC media services comprises a WebRTC-enabled media server including a scripting engine, a WebRTC functionality provider, and a control application programming interface (API). The WebRTC-enabled media server is configured to receive, from a WebRTC application server, a stream establishment application, and to establish, via the stream establishment application, a plurality of WebRTC interactive flows associated with a corresponding plurality of WebRTC clients. The WebRTC-enabled media server is also configured to apply a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows, and provide the media server flows to one or more of the plurality of WebRTC clients. The WebRTC-enabled media server may thus provide functionality via familiar WebRTC control interfaces.

Description

BACKGROUND Field of the Disclosure
The technology of the disclosure relates generally to Web Real-Time Communications (WebRTC) interactive flows.
Technical Background
Web Real-Time Communications (WebRTC) represents an ongoing effort to develop industry standards for integrating real-time communications functionality into web clients, such as web browsers, to enable direct interaction with other web clients. This real-time communications functionality is accessible by web developers via standard markup tags, such as those provided by version 5 of the Hypertext Markup Language (HTML5), and client-side scripting Application Programming Interfaces (APIs) such as JavaScript APIs. More information regarding WebRTC may be found in WebRTC: APIs and RTCWEB Protocols of the HTML5 Real-Time Web,” by Alan B. Johnston and Daniel C. Burnett, 2nd Edition (2013 Digital Codex LLC), which is incorporated herein in its entirety by reference.
WebRTC provides built-in capabilities for establishing real-time video, audio, and/or data streams in both point-to-point interactive sessions and multi-party interactive sessions. The WebRTC standards are currently under joint development by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF). Information on the current state of WebRTC standards can be found at, e.g., http://www.w3c.org and http://www.ietf.org.
To establish a WebRTC interactive flow (e.g., a real-time video, audio, and/or data exchange), two WebRTC clients may retrieve WebRTC-enabled web applications, such as HTML5/JavaScript web applications, from a WebRTC application server. Through the web applications, the two WebRTC clients then engage in dialogue for initiating a peer connection over which the WebRTC interactive flow will pass. The initiation dialogue may include a media negotiation used to reach an agreement on parameters that define characteristics of the WebRTC interactive flow. Once the initiation dialogue is complete, the WebRTC clients may then establish a direct peer connection with one another, and may begin an exchange of media and/or data packets transporting real-time communications. The peer connection between the WebRTC clients typically employs the Secure Real-time Transport Protocol (SRTP) to transport real-time media flows, and may utilize various other protocols for real-time data interchange.
The WebRTC clients may be connected using a “full mesh” topology, in which each WebRTC client participating in the real-time communications establishes a peer connection with every other participating WebRTC client. In some circumstances, though, a full mesh topology may be prohibitively expensive in terms of network bandwidth and/or computing resources. As an alternative to a full mesh topology, each of the WebRTC clients may connect to a central media server, which mixes and distributes the WebRTC interactive flows to the participating WebRTC clients. The media server may also provide various types of media processing functionality (e.g., inserting announcements into, recording, switching, and/or redirecting WebRTC interactive flows, as non-limiting examples) that are accessible by the WebRTC application. However, conventional media servers typically require developers to be familiar with control interfaces that are based on Session Initiation Protocol (SIP) or other protocols outside the scope of expertise of many WebRTC application developers. As a result, developers may face a steep learning curve, which may present an obstacle to implementation of WebRTC applications utilizing media server functionality.
SUMMARY OF THE DETAILED DESCRIPTION
Embodiments disclosed in the detailed description include providing Web Real-Time Communications (WebRTC) media services via WebRTC-enabled media servers. Related methods, systems, and computer-readable media are also disclosed. In this regard, in one embodiment, a WebRTC-enabled media server provides media services by implementing a standard WebRTC client application programming interface (API). The WebRTC-enabled media server provides a scripting engine, a WebRTC functionality provider, and a control API for accessing a functionality of the WebRTC functionality provider. Together, these elements allow the WebRTC-enabled media server to interact with WebRTC peers, in much the same way as a conventional WebRTC client, while simultaneously providing media server functionality. The WebRTC-enabled media server receives a stream establishment application from a WebRTC application server. The stream establishment application may comprise one or more JavaScript web applications, as a non-limiting example. The WebRTC-enabled media server uses the stream establishment application to establish WebRTC interactive flows with multiple WebRTC clients, and applies a media service to one or more of the WebRTC interactive flows to generate one or more media server flows. The one or more media server flows is then provided to one or more of the WebRTC clients. The media service may be applied to the one or more WebRTC interactive flows in response to media server commands that the WebRTC-enabled media server receives from the WebRTC application server via the control API. The WebRTC-enabled media server may also generate media server events as a result of applying the media service, and may provide the media server events to the WebRTC application server via the control API. In this manner, media processing functionality of the WebRTC-enabled media server may be accessed by the WebRTC application server through the use of interfaces familiar to WebRTC application developers.
In another embodiment, a system for providing WebRTC media services includes at least one communications interface and a WebRTC-enabled media server. The WebRTC-enabled media server comprises a scripting engine and a WebRTC functionality provider, and is communicatively coupled to a WebRTC application server and a plurality of WebRTC clients via the at least one communications interface. The WebRTC-enabled media server is configured to provide a control API for accessing a functionality of the WebRTC functionality provider. The WebRTC-enabled media server is also configured to receive, from the WebRTC application server, a stream establishment application. The WebRTC-enabled media server is additionally configured to establish, via the stream establishment application, a plurality of WebRTC interactive flows associated with corresponding ones of the plurality of WebRTC clients. The WebRTC-enabled media server is also configured to apply a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows. The WebRTC-enabled media server is additionally configured to provide the one or more media server flows to one or more of the plurality of WebRTC clients.
In another embodiment, a method for providing WebRTC media services is provided. The method comprises providing, by a WebRTC-enabled media server executing on a computing device, a control API for accessing a functionality of a WebRTC functionality provider of the WebRTC-enabled media server. The method also comprises receiving, by the WebRTC-enabled media server, a stream establishment application from a WebRTC application server. The method further comprises establishing, via the stream establishment application, a plurality of WebRTC interactive flows associated with corresponding ones of a plurality of WebRTC clients. The method also comprises applying a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows. The method additionally comprises providing the one or more media server flows to one or more of the plurality of WebRTC clients.
In another embodiment, a non-transitory computer-readable medium having stored thereon computer-executable instructions to cause a processor to implement a method for providing WebRTC media services is provided. The method implemented by the computer-executable instructions comprises providing, by a WebRTC-enabled media server, a control API for accessing a functionality of a WebRTC functionality provider of the WebRTC-enabled media server. The method implemented by the computer-executable instructions also comprises receiving, by the WebRTC-enabled media server, a stream establishment application from a WebRTC application server. The method implemented by the computer-executable instructions further comprises establishing, via the stream establishment application, a plurality of WebRTC interactive flows associated with corresponding ones of a plurality of WebRTC clients. The method implemented by the computer-executable instructions also comprises applying a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows. The method implemented by the computer-executable instructions additionally comprises providing the one or more media server flows to one or more of the plurality of WebRTC clients.
BRIEF DESCRIPTION OF THE FIGURES
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
FIG. 1 is a conceptual diagram illustrating a Web Real-Time Communications (WebRTC) interactive session between two WebRTC clients using a WebRTC-enabled media server;
FIG. 2 is a flowchart illustrating exemplary operations of the WebRTC-enabled media server of FIG. 1 for providing WebRTC media services;
FIG. 3 is a flowchart illustrating further exemplary operations, in addition to the operations of FIG. 2, for providing WebRTC media services via the WebRTC-enabled media server of FIG. 1;
FIG. 4 is a diagram illustrating exemplary communications flows within an exemplary system including the WebRTC-enabled media server of FIG. 1; and
FIG. 5 is a block diagram of an exemplary processor-based system that may include the WebRTC-enabled media server of FIG. 1.
DETAILED DESCRIPTION
With reference now to the drawing figures, several exemplary embodiments of the present disclosure are described. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
Embodiments disclosed in the detailed description include providing Web Real-Time Communications (WebRTC) media services via WebRTC-enabled media servers. Related methods, systems, and computer-readable media are also disclosed. In this regard, in one embodiment, a WebRTC-enabled media server provides media services by implementing a standard WebRTC client application programming interface (API). The WebRTC-enabled media server provides a scripting engine, a WebRTC functionality provider, and a control API for accessing a functionality of the WebRTC functionality provider. Together, these elements allow the WebRTC-enabled media server to interact with WebRTC peers, in much the same way as a conventional WebRTC client, while simultaneously providing media server functionality. The WebRTC-enabled media server receives a stream establishment application from a WebRTC application server. The stream establishment application may comprise one or more JavaScript web applications, as a non-limiting example. The WebRTC-enabled media server uses the stream establishment application to establish WebRTC interactive flows with multiple WebRTC clients, and applies a media service to one or more of the WebRTC interactive flows to generate one or more media server flows. The one or more media server flows is then provided to one or more of the WebRTC clients. The media service may be applied to the one or more WebRTC interactive flows in response to media server commands that the WebRTC-enabled media server receives from the WebRTC application server via the control API. The WebRTC-enabled media server may also generate media server events as a result of applying the media service, and may provide the media server events to the WebRTC application server via the control API. In this manner, media processing functionality of the WebRTC-enabled media server may be accessed by the WebRTC application server through the use of interfaces familiar to WebRTC application developers.
In another embodiment, a system for providing WebRTC media services includes at least one communications interface and a WebRTC-enabled media server. The WebRTC-enabled media server comprises a scripting engine and a WebRTC functionality provider, and is communicatively coupled to a WebRTC application server and a plurality of WebRTC clients via the at least one communications interface. The WebRTC-enabled media server is configured to provide a control API for accessing a functionality of the WebRTC functionality provider. The WebRTC-enabled media server is also configured to receive, from the WebRTC application server, a stream establishment application. The WebRTC-enabled media server is additionally configured to establish, via the stream establishment application, a plurality of WebRTC interactive flows associated with corresponding ones of the plurality of WebRTC clients. The WebRTC-enabled media server is also configured to apply a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows. The WebRTC-enabled media server is additionally configured to provide the one or more media server flows to one or more of the plurality of WebRTC clients.
FIG. 1 illustrates an exemplary WebRTC interactive system 10 for providing WebRTC media services via WebRTC-enabled media servers as disclosed herein. In particular, the exemplary WebRTC interactive system 10 provides a WebRTC-enabled media server 12 that executes on a computing device 14. The WebRTC-enabled media server 12 is configured to establish WebRTC interactive sessions with WebRTC peers in a manner similar to a conventional WebRTC client, and is further configured to provide media services to a WebRTC application server 16. As used herein, a “WebRTC interactive session” refers to operations for carrying out a WebRTC offer/answer exchange, establishing a peer connection, and commencing a WebRTC interactive flow between two or more endpoints (e.g., two or more WebRTC clients). A “WebRTC interactive flow,” as disclosed herein, refers to an interactive media flow and/or an interactive data flow that passes between or among two or more endpoints according to the WebRTC standards and protocols known in the art. As non-limiting examples, an interactive media flow constituting a WebRTC interactive flow may comprise a real-time audio stream and/or a real-time video stream, or other real-time media or data streams. Data and/or media comprising a WebRTC interactive flow may be collectively referred to herein as “content.”
For purposes of illustration, a WebRTC interactive flow 18 is shown in FIG. 1 as passing between the computing device 14 and a computing device 20, and a WebRTC interactive flow 22 is shown as passing between the computing device 14 and a computing device 24. It is to be understood that the computing devices 14, 20, and 24 may all be located within the same public or private network, or may be located within separate, communicatively coupled public or private networks. Some embodiments of the WebRTC interactive system 10 of FIG. 1 may provide that each of the computing devices 14, 20, and 24 may be any computing device having network communications capabilities, such as a smartphone, a tablet computer, a dedicated web appliance, a media server, a desktop or server computer, or a purpose-built communications device, as non-limiting examples. The computing devices 14, 20, and 24 include communications interfaces 26, 28, and 30, respectively, for connecting the computing devices 14, 20, and 24 to one or more public and/or private networks. In some embodiments, the elements of the computing devices 14, 20, and 24 may be distributed across more than one computing device 14, 20, and 24.
The computing devices 20 and 24 of FIG. 1 include WebRTC clients 32 and 34, respectively. Each of the WebRTC clients 32 and 34 may be a WebRTC-enabled web browser application, a dedicated communications application, a mobile application, or an interface-less application, such as a daemon or service application, as non-limiting examples. In this embodiment, the WebRTC client 32 comprises a scripting engine 36 and a WebRTC functionality provider 38. The scripting engine 36 enables client-side applications written in a scripting language, such as JavaScript, to be executed within the WebRTC client 32. The scripting engine 36 also provides an API to facilitate communications with other functionality providers within the WebRTC client 32 and/or the computing device 20, and/or with other web clients, user devices, or web servers. The WebRTC functionality provider 38 implements the protocols, codecs, and APIs necessary to enable real-time communications via WebRTC. The scripting engine 36 and the WebRTC functionality provider 38 are communicatively coupled via a set of defined APIs, as indicated by bidirectional arrow 40. The WebRTC client 34 also includes a scripting engine 42 and a WebRTC functionality provider 44 for providing functionality similar to that of the scripting engine 36 and the WebRTC functionality provider 38, respectively, of the WebRTC client 32. The scripting engine 42 and the WebRTC functionality provider 44 of the WebRTC client 34 are communicatively coupled via a set of defined APIs, as indicated by bidirectional arrow 46.
To establish a WebRTC interactive session, the WebRTC client 32 and the WebRTC client 34 each downloads a WebRTC application 48 from the WebRTC application server 16 (e.g., via Hyper Text Transfer Protocol (HTTP)/Hyper Text Transfer Protocol Secure (HTTPS) connections). In some embodiments, the WebRTC application 48 may comprise an HTML5/JavaScript web application that provides a rich user interface using HTML5, and uses JavaScript to handle user input and to communicate with the WebRTC application server 16. It is to be understood that the WebRTC application 48 may comprise multiple, interoperable WebRTC applications tailored for specific characteristics (such as operating systems and/or platforms) of the WebRTC clients 32 and 34.
In a typical peer-to-peer architecture, the WebRTC client 32 and the WebRTC client 34 engage in an initiation dialogue (not shown) with one another to negotiate media types and capabilities of the desired WebRTC interactive session. In some embodiments, the initiation dialogue may include a WebRTC offer/answer exchange in which WebRTC session description objects (not shown) are exchanged between the WebRTC clients 32 and 34 via the WebRTC application server 16. After the initiation dialogue is complete, a WebRTC interactive flow is established directly between the WebRTC client 32 and the WebRTC client 34 via a peer connection. In some embodiments, the WebRTC client 32 and the WebRTC client 34 may each connect to a conventional media server (not shown). The conventional media server may mix and distribute WebRTC interactive flows to the WebRTC clients 32 and 34, and may provide other media processing functionality such as inserting announcements into, recording, and/or redirecting the WebRTC interactive flows, as non-limiting examples. However, a conventional media server may require developers to be familiar with control interfaces based on protocols (e.g., Session Initiation Protocol (SIP)) that may be outside the scope of expertise of many WebRTC application developers.
In this regard, the WebRTC-enabled media server 12 is provided to establish WebRTC interactive sessions with WebRTC peers in a manner similar to a conventional WebRTC client, and to provide media services to the WebRTC application server 16 using an interface more accessible to WebRTC application developers. The WebRTC-enabled media server 12 provides a scripting engine 50 and a media handling functionality provider 52. The WebRTC-enabled media server 12 also provides a control API 54, through which a functionality of the media handling functionality provider 52 may be accessed and controlled. In some embodiments, the scripting engine 50 and the media handling functionality provider 52 may be communicatively coupled to each other via the control API 54 as indicated by bidirectional arrows 56 and 58.
The scripting engine 50 of the WebRTC-enabled media server 12 provides functionality corresponding to that of the scripting engines 36 and 42 of the WebRTC clients 32 and 34, respectively. The media handling functionality provider 52 includes a WebRTC functionality provider 60, which provides functionality corresponding to that of the WebRTC functionality providers 38 and 44 of the WebRTC clients 32 and 34, respectively. The media handling functionality provider 52 also provides media processing functionality similar to that provided by conventional media servers. The control API 54 defines one or more media server commands 62 that the WebRTC-enabled media server 12 may receive from the WebRTC application server 16 to apply media services to WebRTC interactive flows. The control API 54 may further specify one or more media server events 64 that the WebRTC-enabled media server 12 may generate to notify the WebRTC application server 16 of relevant occurrences during or resulting from applying the media services. The control API 54 may comprise a Web-accessible API configured to receive the media server commands 62 from and/or provide the media server events 64 to the WebRTC application server 16. As a non-limiting example, the control API 54 may include a Representational State Transfer (REST) API and/or a JavaScript API. In some embodiments in which the control API 54 comprises a JavaScript API, the control API 54 may receive the media server commands 62 and/or provide the media server events 64 via a media control application 65 executed by the scripting engine 50.
As seen in FIG. 1, the WebRTC-enabled media server 12 is configured to receive a stream establishment application 66 from the WebRTC application server 16, as indicated by arrow 68. Some embodiments may provide that the WebRTC-enabled media server 12 also receives the media control application 65 from the WebRTC application server 16, as indicated by arrow 69. The stream establishment application 66 and/or the media control application 65 may each comprise a JavaScript application, as a non-limiting example. In some embodiments, the stream establishment application 66 and/or the media control application 65 are downloaded upon startup of the WebRTC-enabled media server 12, and/or upon association of the WebRTC-enabled media server 12 with the WebRTC application server 16. Some embodiments may provide that a same version of the stream establishment application 66 and/or the media control application 65 may be used by more than one WebRTC application server 16, and/or a custom version of the stream establishment application 66 and/or the media control application 65 may be used by one or more WebRTC application servers 16. The download location for the stream establishment application 66 and/or the media control application 65 may be specified by a value set within the WebRTC-enabled media server 12 prior to or during execution of the WebRTC-enabled media server 12, or may be set by a web service invocation from the WebRTC application server 16.
The stream establishment application 66 provides functionality for establishing the WebRTC interactive flows 18 and 22 between the WebRTC-enabled media server 12 and the WebRTC clients 32 and 34. In some embodiments, the stream establishment application 66 may also be downloaded from the WebRTC application server 16 by the WebRTC client 32 and the WebRTC client 34 as part of the WebRTC application 48. The stream establishment application 66 downloaded by the WebRTC clients 32 and 34 and the WebRTC-enabled media server 12 may be the same application across all platforms and devices, or different platform- or device-specific versions of the stream establishment application 66 may be provided. In some embodiments, the stream establishment application 66 may be downloaded by the WebRTC clients 32 and 34 each time a WebRTC interactive session is to be established.
62 Using the scripting engine 50 and the media handling functionality provider 52, the WebRTC-enabled media server 12 may interact with the WebRTC clients 32 and 34 to establish the WebRTC interactive flows 18 and 22. In the example of FIG. 1, the stream establishment application 66, downloaded by the WebRTC clients 32 and 34 as part of the WebRTC application 48, directs the WebRTC clients 32 and 34 to engage in initiation dialogues 70 and 72, respectively, with the WebRTC-enabled media server 12. In response to the initiation dialogues 70 and 72, the scripting engine 50 of the WebRTC-enabled media server 12 employs the stream establishment application 66 to establish the WebRTC interactive flows 18 and 22 with the respective WebRTC clients 32 and 34. To further facilitate interoperability with the WebRTC application server 16 and the WebRTC clients 32 and 34, the WebRTC-enabled media server 12 may provide support for standard transport mechanisms (e.g., WebSockets, as a non-limiting example), as well as mechanisms required by WebRTC specifications such as Interactive Connectivity Establishment (ICE), Session Traversal Utilities for Network Address Translation (STUN), and/or Traversal Using Relays around Network Address Translation (TURN).
After the WebRTC interactive flows 18 and 22 are established, the media handling functionality provider 52 of the WebRTC-enabled media server 12 may apply a media service to content of incoming media and/or data streams received from one or more of the WebRTC interactive flows 18 and 22 to generate one or more of outgoing media server flows 74 and 76. In the example of FIG. 1, the media handling functionality provider 52 may be controlled by the WebRTC application server 16 via the control API 54, and/or may be controlled by the media control application 65 executed by the scripting engine 50 of the WebRTC-enabled media server 12. As non-limiting examples, applying the media service may include mixing the WebRTC interactive flows 18 and 22, switching the media server flows 74 and 76, inserting content into one or more of the WebRTC interactive flows 18 and 22, recording one or more of the WebRTC interactive flows 18 and 22, redirecting one or more of the WebRTC interactive flows 18 and 22, performing text-to-speech conversion on one or more of the WebRTC interactive flows 18 and 22, and/or performing speech recognition on one or more of the WebRTC interactive flows 18 and 22.
In some embodiments, operation of the WebRTC functionality provider 60 of the WebRTC-enabled media server 12 may be controlled by the media server command(s) 62 received from the WebRTC application server 16. The media server command(s) 62 may be received via an HTTP request (such as an HTTP GET request) and/or via WebSockets signaling. In some embodiments, the media server command(s) 62 may comprise a REST API invocation received by the control API 54 from the WebRTC application server 16. According to some embodiments, the media server command(s) 62 may comprise a JavaScript API invocation received by the media control application 65 from the WebRTC application server 16 and relayed to the control API 54.
Some embodiments may provide that the WebRTC functionality provider 60 of the WebRTC-enabled media server 12 generates the media server event(s) 64 as a result of applying the media service to the WebRTC interactive flows 18 and 22. For example, the WebRTC-enabled media server 12 may notify the WebRTC application server 16 that an announcement has completed, or that input of dual-tone multi-frequency (DTMF) digits has been detected. The media server event(s) 64 may be sent to the WebRTC application server 16 via an HTTP request (such as an HTTP POST request) or by WebSockets, as non-limiting examples. In some embodiments, the media server event(s) 64 may be provided to the WebRTC application server 16 via a REST API by the control API 54. According to some embodiments, the media server event(s) 64 may be provided to the WebRTC application server 16 via a JavaScript API of the media control application 65.
The specific content and format of the media server command(s) 62 and the media server event(s) 64 may be determined by the control API 54 and/or may specified by the media control application 65. In some embodiments, the control API 54 may accept standard WebRTC objects, such as a PeerConnection object, as parameters. The control API 54 may be based on APIs such as Java Specification Request (JSR) 309, as a non-limiting example.
It is to be understood that the WebRTC-enabled media server 12 may provide media services concurrently to multiple WebRTC application servers 16. For example, the WebRTC-enabled media server 12 may receive, and concurrently execute, a unique stream establishment application 66 and/or a unique media control application 65 for each of multiple WebRTC application servers 16. In some embodiments, the WebRTC-enabled media server 12 may provide a separate instance of the scripting engine 50 and/or the media handling functionality provider 52 for each of multiple concurrent WebRTC interactive sessions.
To generally describe exemplary operations of the WebRTC-enabled media server 12 of FIG. 1 for providing WebRTC media services, FIG. 2 is provided. For the sake of clarity, elements of FIG. 1 are referenced in describing FIG. 2. In the example of FIG. 2, operations begin with the WebRTC-enabled media server 12, executing on the computing device 14, providing the control API 54 for accessing a functionality of the WebRTC functionality provider 60 of the WebRTC-enabled media server 12 (block 77). The control API 54 specifies the media server command(s) 62 that may be received from the WebRTC application server 16, as well as the media server event(s) 64 that may be generated by the WebRTC-enabled media server 12. The WebRTC-enabled media server 12 then receives the stream establishment application 66 from the WebRTC application server 16 (block 78). The stream establishment application 66 enables the WebRTC-enabled media server 12 to establish the WebRTC interactive flows 18 and 22 with the WebRTC clients 32 and 34.
The WebRTC-enabled media server 12 next establishes a plurality of WebRTC interactive flows 18, 22, each of which is associated with a respective one of a plurality of WebRTC clients 32, 34, via the stream establishment application 66 (block 80). According to some embodiments provided herein, the WebRTC interactive flows 18 and 22 may be established in response to the initiation dialogues 70 and 72 that are initiated by the WebRTC clients 32 and 34, respectively, or in response to initiation dialogues (not shown) that are initiated by the WebRTC-enabled media server 12. Some embodiments may provide that the initiation dialogues 70 and 72 are initiated at the direction of the WebRTC application 48 and/or the WebRTC application server 16.
Once the plurality of WebRTC interactive flows 18, 22 is established, the WebRTC-enabled media server 12 applies a media service to one or more of the plurality of WebRTC interactive flows 18, 22 to generate one or more media server flows 74, 76 (block 82). The media server flows 74, 76 may include data from either or both of the WebRTC interactive flows 18, 22, and/or additional content (such as an announcement) inserted into the WebRTC interactive flows 18, 22 by the WebRTC-enabled media server 12. The WebRTC-enabled media server 12 then provides the one or more media server flows 74, 76 to one or more of the plurality of WebRTC clients 32, 34 (block 84). In this manner, the WebRTC-enabled media server 12 may provide a usable, intuitive interface to WebRTC application developers for providing media functionality to the WebRTC application server 16.
FIG. 3 is a flowchart illustrating optional exemplary operations, in addition to the operations of FIG. 2, for providing WebRTC media services via the WebRTC-enabled media server 12 of FIG. 1. As seen in FIG. 3, the WebRTC-enabled media server 12 may receive, via the control API 54, a media server command 62 from the WebRTC application server 16 (block 86). The media server command 62 may be received via an HTTP request (such as an HTTP GET request) and/or via WebSockets signaling, and may indicate a media service requested by the WebRTC application server 16. In some embodiments, the media server command 62 may be received via a REST API invocation and/or a JavaScript API invocation. The WebRTC-enabled media server 12 may thus apply a media service indicated by the media server command 62 to one or more of the WebRTC interactive flows 18, 22 (block 88).
The WebRTC-enabled media server 12 may also generate a media server event 64 as a result of applying the media service to the one or more of the plurality of WebRTC interactive flows 18, 22 (block 90). For instance, the WebRTC-enabled media server 12 may generate a media server event 64 to notify the WebRTC application server 16 that an announcement has completed, or that input of DTMF digits has been detected. In some embodiments, the media server event 64 may be provided via a REST API and/or a JavaScript API. The WebRTC-enabled media server 12 may then provide the media server event 64 to the WebRTC application server 16 via the control API 54 (block 92).
To illustrate exemplary communications flows during the establishment of a WebRTC interactive session and the provision of media services using the WebRTC-enabled media server 12 of FIG. 1, FIG. 4 is provided. In FIG. 4, the scripting engine 36 and the WebRTC functionality provider 38 of the WebRTC client 32, the WebRTC application server 16, the scripting engine 50, the control API 54, and the WebRTC functionality provider 60 of the WebRTC-enabled media server 12, and the scripting engine 42 and the WebRTC functionality provider 44 of the WebRTC client 34 are each represented by vertical dotted lines. It is to be understood for this example that the WebRTC client 32 and the WebRTC client 34 have each downloaded a WebRTC-enabled application, such as the WebRTC application 48, from the WebRTC application server 16. It is to be further understood that the WebRTC-enabled application downloaded by each of the WebRTC clients 32 and 34 includes the stream establishment application 66.
As seen in FIG. 4, the scripting engine 50 of the WebRTC-enabled media server 12 first downloads the stream establishment application 66 from the WebRTC application server 16. For embodiments in which the WebRTC application server 16 controls the WebRTC functionality provider 60 via a JavaScript API, the scripting engine 50 may also optionally download the media control application 65 from the WebRTC application server 16. The scripting engine 50 may download the stream establishment application 66 and/or the media control application 65 based on a download location set within the WebRTC-enabled media server 12 prior to or during execution of the WebRTC-enabled media server 12, or set by a web service invocation (not shown) from the WebRTC application server 16.66
The WebRTC-enabled media server 12 then creates an open channel 94 to the WebRTC application server 16, through which the WebRTC application server 16 may request media services. In some embodiments, the open channel 94 may be created using an HTTP request (such as an HTTP GET request), or may be created using WebSockets. It is to be understood that multiple open channels 94 may be maintained by the WebRTC-enabled media server 12, thus enabling multiple concurrent media service requests to be handled.
Next, the establishment of a WebRTC interactive session between the WebRTC client 32 and the WebRTC-enabled media server 12 begins with the scripting engine 36 of the WebRTC client 32 sending a WebRTC session description object to the scripting engine 50 of the WebRTC-enabled media server 12 via an HTTPS connection. In this example, the WebRTC session description object is a Session Description Protocol (SDP) object, and is referred to as SDP Object A (arrow 96). SDP Object A represents the “offer” in a WebRTC offer/answer exchange, and specifies the media types and capabilities that the WebRTC client 32 supports and prefers for use in the WebRTC interactive session. After the scripting engine 50 of the WebRTC-enabled media server 12 receives the SDP Object A from the WebRTC client 32, the scripting engine 50 sends a WebRTC session description object in response, referred to as SDP Object B (arrow 98), via HTTPS to the WebRTC client 32. The SDP Object B in this example represents the “answer” in the WebRTC offer/answer exchange. The WebRTC interactive flow 18 is then established between the WebRTC client 32 and the WebRTC-enabled media server 12. Establishing the WebRTC interactive flow 18 may include “hole punching” to determine the best way to establish direct communications, as well as key negotiations to establish secure connections. It is to be understood that establishing the WebRTC interactive flow 18 may be accomplished through operations of the stream establishment application 66 executed by the scripting engine 50 of the WebRTC-enabled media server 12 and the scripting engine 36 of the WebRTC client 32.
With continuing reference to FIG. 4, a WebRTC interactive session is also established between the WebRTC client 34 and the WebRTC-enabled media server 12. It is to be understood that operations for establishing a WebRTC interactive session between the WebRTC client 34 and the WebRTC-enabled media server 12 may occur before, concurrently with, or after the establishment of the WebRTC interactive flow 18 between the WebRTC client 32 and the WebRTC-enabled media server 12. As seen in FIG. 4, the scripting engine 42 of the WebRTC client 34 sends a WebRTC session description object to the scripting engine 50 of the WebRTC-enabled media server 12 via an HTTPS connection. The WebRTC session description object in this example is a SDP object referred to as SDP Object C (arrow 100), and specifies the media types and capabilities supported and/or preferred for use by the WebRTC client 34. In response to receiving the SDP Object C from the WebRTC client 34, the scripting engine 50 sends a WebRTC session description object, referred to as SDP Object D (arrow 102), via HTTPS to the WebRTC client 34. The SDP Object D represents the “answer” in the WebRTC offer/answer exchange. Based on the offer/answer exchange, the WebRTC interactive flow 22 is then established between the WebRTC client 34 and the WebRTC-enabled media server 12. It is to be understood that establishing the WebRTC interactive flow 22 may be accomplished through operations of the stream establishment application 66 being executed by the scripting engine 50 of the WebRTC-enabled media server 12 and the scripting engine 42 of the WebRTC client 34.
After the WebRTC interactive flows 18 and 22 are established, the WebRTC-enabled media server 12 generates one or more media server flows 74 and 76 by applying media services to one or more of the WebRTC interactive flows 18 and 22, and provides the one or more media server flows 74 and 76 to the WebRTC clients 32 and 34, respectively. As noted above, applying media services may include mixing the WebRTC interactive flows 18 and 22, switching the media server flows 74 and 76, inserting content into one or more of the WebRTC interactive flows 18 and 22, recording one or more of the WebRTC interactive flows 18 and 22, redirecting one or more of the WebRTC interactive flows 18 and 22, performing text-to-speech conversion on one or more of the WebRTC interactive flows 18 and 22, and/or performing speech recognition on one or more of the WebRTC interactive flows 18 and 22.
In some embodiments, the WebRTC functionality provider 60 may receive the media server command(s) 62 from the WebRTC application server 16 via the control API 54. The media server command(s) 62 may be routed through the media control application 65 executed by the scripting engine 50. In this manner, the WebRTC application server 16 may indicate media services to be applied to the WebRTC interactive flows 18 and/or 22, and thus may selectively control, monitor, and/or modify a content of the media server flows 74 and/or 76 provided to the WebRTC clients 32 and 34. The WebRTC-enabled media server 12 may also generate the media server event(s) 64 in response to applying media services to the WebRTC interactive flows 18 and/or 22. As non-limiting examples, the WebRTC-enabled media server 12 may generate media server event(s) 64 to notify the WebRTC application server 16 that an announcement has completed, or that input of DTMF digits has been detected. The media server event(s) 64 may then be provided to the WebRTC application server 16 by the control API 54. In some embodiments, the media server event(s) 64 may be provided via the media control application 65 executed by the scripting engine 50.
FIG. 5 provides a block diagram representation of a processing system 104 in the exemplary form of an exemplary computer system 106 adapted to execute instructions to perform the functions described herein. In some embodiments, the processing system 104 may execute instructions to perform the functions of the WebRTC-enabled media server 12 of FIG. 1. In this regard, the processing system 104 may comprise the computer system 106, within which a set of instructions for causing the processing system 104 to perform any one or more of the methodologies discussed herein may be executed. The processing system 104 may be connected (as a non-limiting example, networked) to other machines in a local area network (LAN), an intranet, an extranet, or the Internet. The processing system 104 may operate in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. While only a single processing system 104 is illustrated, the terms “controller” and “server” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The processing system 104 may be a server, a personal computer, a desktop computer, a laptop computer, a personal digital assistant (PDA), a computing pad, a mobile device, or any other device and may represent, as non-limiting examples, a server or a user's computer.
The exemplary computer system 106 includes a processing device or processor 108, a main memory 110 (as non-limiting examples, read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), and a static memory 112 (as non-limiting examples, flash memory, static random access memory (SRAM), etc.), which may communicate with each other via a bus 114. Alternatively, the processing device 108 may be connected to the main memory 110 and/or the static memory 112 directly or via some other connectivity means.
The processing device 108 represents one or more processing devices such as a microprocessor, central processing unit (CPU), or the like. More particularly, the processing device 108 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 108 is configured to execute processing logic in instructions 116 and/or cached instructions 118 for performing the operations and steps discussed herein.
The computer system 106 may further include a communications interface in the form of a network interface device 120. It also may or may not include an input 122 to receive input and selections to be communicated to the computer system 106 when executing the instructions 116, 118. It also may or may not include an output 124, including but not limited to display(s) 126. The display(s) 126 may be a video display unit (as non-limiting examples, a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (as a non-limiting example, a keyboard), a cursor control device (as a non-limiting example, a mouse), and/or a touch screen device (as a non-limiting example, a tablet input device or screen).
The computer system 106 may or may not include a data storage device 128 that includes using drive(s) 130 to store the functions described herein in a computer-readable medium 132, on which is stored one or more sets of instructions 134 (e.g., software) embodying any one or more of the methodologies or functions described herein. The functions can include the methods and/or other functions of the processing system 104, a participant user device, and/or a licensing server, as non-limiting examples. The one or more sets of instructions 134 may also reside, completely or at least partially, within the main memory 110 and/or within the processing device 108 during execution thereof by the computer system 106. The main memory 110 and the processing device 108 also constitute machine-accessible storage media. The instructions 116, 118, and/or 134 may further be transmitted or received over a network 136 via the network interface device 120. The network 136 may be an intra-network or an inter-network.
While the computer-readable medium 132 is shown in an exemplary embodiment to be a single medium, the term “machine-accessible storage medium” should be taken to include a single medium or multiple media (as non-limiting examples, a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions 134. The term “machine-accessible storage medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions for execution by the machine, and that cause the machine to perform any one or more of the methodologies disclosed herein. The term “machine-accessible storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, as non-limiting examples, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an Application Specific Integrated Circuit (ASIC). The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.
It is also noted that the operational steps described in any of the exemplary embodiments herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary embodiments may be combined. It is to be understood that the operational steps illustrated in the flow chart diagrams may be subject to numerous different modifications as will be readily apparent to one of skill in the art. Those of skill in the art would also understand that information and signals may be represented using any of a variety of different technologies and techniques. As non-limiting examples, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (20)

What is claimed is:
1. A system for providing Web Real-Time Communications (WebRTC) media services, comprising:
at least one communications interface;
a processor; and
a computer readable medium coupled with the processor and comprising processor readable and executable instructions that program the processor to implement a WebRTC-enabled media server comprising a scripting engine, a WebRTC functionality provider, a control application program interface (API) providing an interface between the scripting engine and the WebRTC functionality provider, and a WebRTC client API, the WebRTC-enabled media server communicatively coupled to a WebRTC application server and a plurality of WebRTC clients via the at least one communications interface;
wherein the WebRTC-enabled media server:
receives, from the WebRTC application server, a stream establishment application;
establishes, via execution of the stream establishment application by the scripting engine and through the WebRTC client API, a plurality of WebRTC interactive flows associated with corresponding ones of the plurality of WebRTC clients through a WebRTC initiation dialogue between the stream establishment application of the Web-RTC-enabled media server and each of the plurality of WebRTC clients, wherein the WebRTC-enabled media server interacts through the WebRTC client API with the WebRTC clients as a WebRTC peer and provides media server functionality based on media server commands received from the WebRTC application server through the control API;
applies a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows; and
provides the one or more media server flows to one or more of the plurality of WebRTC clients.
2. The system of claim 1, wherein the WebRTC-enabled media server receives the stream establishment application in response to a Hyper Text Transfer Protocol (HTTP) request or a Web Sockets request, or combinations thereof.
3. The system of claim 1, wherein:
the control API receives a media server command from the WebRTC application server; and
the WebRTC functionality provider applies a media service indicated by the media server command to one or more of the plurality of WebRTC interactive flows.
4. The system of claim 3, wherein the control API receives the media server command via a Representational State Transfer (REST) API invocation or a JavaScript API invocation.
5. The system of claim 1, wherein:
the WebRTC functionality provider generates a media server event responsive to applying the media service to the one or more of the plurality of WebRTC interactive flows; and
the control API provides the media server event to the WebRTC application server.
6. The system of claim 5, wherein the control API provides the media server event via a REST API or a JavaScript API.
7. The system of claim 1, wherein:
the control API comprises a JavaScript API; and
the WebRTC-enabled media server further receives a media control application configured to access the functionality of the WebRTC functionality provider via the control API.
8. A method for providing Web Real-Time Communications (WebRTC) media services, comprising:
providing, by a WebRTC-enabled media server executing on a computing device, a scripting engine, a WebRTC functionality provider, a control application programming interface (API) providing an interface between the scripting engine and the WebRTC functionality provider, and a WebRTC client API;
receiving, by the WebRTC-enabled media server, a stream establishment application from a WebRTC application server;
establishing, via execution of the stream establishment application by the scripting engine and through the WebRTC client API, a plurality of WebRTC interactive flows associated with corresponding ones of a plurality of WebRTC clients through a WebRTC initiation dialogue between the stream establishment application of the Web-RTC-enabled media server and each of the plurality of WebRTC clients, wherein the WebRTC-enabled media server interacts through the WebRTC client API with the WebRTC clients as a WebRTC peer and provides media server functionality based on media server commands received from the WebRTC application server through the control API;
applying a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows; and
providing the one or more media server flows to one or more of the plurality of WebRTC clients.
9. The method of claim 8, wherein receiving the stream establishment application comprises receiving the stream establishment application in response to a Hyper Text Transfer Protocol (HTTP) request or a Web Sockets request, or combinations thereof.
10. The method of claim 8, further comprising:
receiving, via the control API, a media server command from the WebRTC application server; and
applying a media service indicated by the media server command to one or more of the plurality of WebRTC interactive flows.
11. The method of claim 10, wherein receiving the media server command comprises receiving the media server command via a Representational State Transfer (REST) API invocation or a JavaScript API invocation.
12. The method of claim 8, further comprising:
generating a media server event responsive to applying the media service to the one or more of the plurality of WebRTC interactive flows; and
providing, via the control API, the media server event to the WebRTC application server.
13. The method of claim 12, wherein providing the media server event comprises providing the media server event via a REST API or a JavaScript API.
14. The method of claim 8, wherein:
the control API comprises a JavaScript API; and
the method further comprises receiving a media control application configured to access the functionality of the WebRTC functionality provider via the control API.
15. A non-transitory computer-readable medium having stored thereon computer-executable instructions to cause a processor to implement a method for providing Web Real-Time Communications (WebRTC) media services, comprising:
providing, by a WebRTC-enabled media server, a scripting engine, a WebRTC functionality provider, a control application programming interface (API) providing an interface between the scripting engine and the WebRTC functionality provider, and a WebRTC client API;
receiving, by the WebRTC-enabled media server, a stream establishment application from a WebRTC application server;
establishing, via execution of the stream establishment application by the scripting engine and through the WebRTC client API, a plurality of WebRTC interactive flows associated with corresponding ones of a plurality of WebRTC clients through a WebRTC initiation dialogue between the stream establishment application of the Web-RTC-enabled media server and each of the plurality of WebRTC clients, wherein the WebRTC-enabled media server interacts through the WebRTC client API with the WebRTC clients as a WebRTC peer and provides media server functionality based on media server commands received from the WebRTC application server through the control API;
applying a media service to one or more of the plurality of WebRTC interactive flows to generate one or more media server flows; and
providing the one or more media server flows to one or more of the plurality of WebRTC clients.
16. The non-transitory computer-readable medium of claim 15 having stored thereon the computer-executable instructions to cause the processor to implement the method, wherein receiving the stream establishment application comprises receiving the stream establishment application in response to a Hyper Text Transfer Protocol (HTTP) request or a Web Sockets request, or combinations thereof.
17. The non-transitory computer-readable medium of claim 15 having stored thereon the computer-executable instructions to cause the processor to implement the method, further comprising:
receiving, via the control API, a media server command from the WebRTC application server; and
applying a media service indicated by the media server command to one or more of the plurality of WebRTC interactive flows.
18. The non-transitory computer-readable medium of claim 17 having stored thereon the computer-executable instructions to cause the processor to implement the method, wherein receiving the media server command comprises receiving the media server command via a Representational State Transfer (REST) API invocation or a JavaScript API invocation.
19. The non-transitory computer-readable medium of claim 15 having stored thereon the computer-executable instructions to cause the processor to implement the method, further comprising:
generating a media server event responsive to applying the media service to the one or more of the plurality of WebRTC interactive flows; and
providing, via the control API, the media server event to the WebRTC application server.
20. The non-transitory computer-readable medium of claim 19 having stored thereon the computer-executable instructions to cause the processor to implement the method, wherein providing the media server event comprises providing the media server event via a REST API or a JavaScript API.
US14/255,361 2014-04-17 2014-04-17 Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media Active 2036-06-06 US10581927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/255,361 US10581927B2 (en) 2014-04-17 2014-04-17 Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/255,361 US10581927B2 (en) 2014-04-17 2014-04-17 Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media

Publications (2)

Publication Number Publication Date
US20150304379A1 US20150304379A1 (en) 2015-10-22
US10581927B2 true US10581927B2 (en) 2020-03-03

Family

ID=54323001

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/255,361 Active 2036-06-06 US10581927B2 (en) 2014-04-17 2014-04-17 Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media

Country Status (1)

Country Link
US (1) US10581927B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220166881A1 (en) * 2020-11-25 2022-05-26 Jpmorgan Chase Bank, N.A. Systems and methods for call routing using generic call control platforms
US20220201069A1 (en) * 2020-12-22 2022-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Dtls/sctp enhancements for ran signaling purposes
US20240022494A1 (en) * 2020-08-20 2024-01-18 Cyara Solutions Pty Ltd System and method for testing real-time communications between browsers and contact centers

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581927B2 (en) * 2014-04-17 2020-03-03 Avaya Inc. Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media
FR3022093A1 (en) * 2014-06-10 2015-12-11 Orange METHOD FOR ESTABLISHING A WEBRTC SESSION
US10581925B2 (en) * 2015-07-06 2020-03-03 Avaya Inc. Session description protocol template modifiers for flexible control of media server resources
US10412130B2 (en) * 2016-04-04 2019-09-10 Hanwha Techwin Co., Ltd. Method and apparatus for playing media stream on web browser
US10362173B2 (en) 2017-05-05 2019-07-23 Sorenson Ip Holdings, Llc Web real-time communication from an audiovisual file
US10855755B2 (en) * 2018-05-04 2020-12-01 Citrix Systems, Inc. WebRTC API redirection with fallbacks
US20200045037A1 (en) * 2018-07-31 2020-02-06 Salesforce.Com, Inc. Token store service for platform authentication
US11038943B1 (en) * 2020-02-11 2021-06-15 Cedar Inc. Content output system and method using multi-device base on web-browser
CN114268599A (en) * 2021-12-21 2022-04-01 北京青云科技股份有限公司 Method, device, equipment and medium for establishing instant messaging connection and instant messaging
US11470141B1 (en) 2022-02-01 2022-10-11 Browserstack Limited Remote device infrastructure
US11979439B2 (en) * 2022-04-27 2024-05-07 Qualcomm Incorporated Method and apparatus for mapping DASH to WebRTC transport
CN115086396B (en) * 2022-04-29 2024-07-02 阿里巴巴(中国)有限公司 Method and system for transmitting media data
US11860771B1 (en) 2022-09-26 2024-01-02 Browserstack Limited Multisession mode in remote device infrastructure
CN115766674A (en) * 2022-11-08 2023-03-07 厦门瑞为信息技术有限公司 Streaming media server

Citations (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2295747A (en) 1994-11-29 1996-06-05 Mitel Corp Visual indication of a communication connection
JP2002207683A (en) 2001-01-09 2002-07-26 Nippon Telegraph & Telephone West Corp Communication system
US20020161685A1 (en) 2001-04-25 2002-10-31 Michael Dwinnell Broadcasting information and providing data access over the internet to investors and managers on demand
JP2002374318A (en) 2001-03-15 2002-12-26 Microsoft Corp System and method for identifying and establishing preferred modalities or channels for communication based on participant preferences and context
US20030112766A1 (en) 2001-12-13 2003-06-19 Matthias Riedel Adaptive quality-of-service reservation and pre-allocation for mobile systems
US20030120599A1 (en) 2001-12-13 2003-06-26 Agboatwalla Adnan M. System, method, and article of manufacture for generating a customizable network user interface
US20030131245A1 (en) 2002-01-04 2003-07-10 Michael Linderman Communication security system
US20030188193A1 (en) 2002-03-28 2003-10-02 International Business Machines Corporation Single sign on for kerberos authentication
US20040019494A1 (en) 2002-05-03 2004-01-29 Manugistics, Inc. System and method for sharing information relating to supply chain transactions in multiple environments
US6714967B1 (en) 1999-07-30 2004-03-30 Microsoft Corporation Integration of a computer-based message priority system with mobile electronic devices
US20040081173A1 (en) 2002-10-15 2004-04-29 Cisco Technology, Inc. Configuration of enterprise gateways
US20040093515A1 (en) 2002-11-12 2004-05-13 Microsoft Corporation Cross platform network authentication and authorization model
US20040167984A1 (en) 2001-07-06 2004-08-26 Zone Labs, Inc. System Providing Methodology for Access Control with Cooperative Enforcement
US20040216173A1 (en) 2003-04-11 2004-10-28 Peter Horoszowski Video archiving and processing method and apparatus
US20050084082A1 (en) 2003-10-15 2005-04-21 Microsoft Corporation Designs, interfaces, and policies for systems that enhance communication and minimize disruption by encoding preferences and situations
US20050177380A1 (en) 2004-02-09 2005-08-11 Pritchard Gordon W. System, computer program and method for enabling individual client users to recruit, connect to, and manage a remote workforce through a shared network
JP2005346556A (en) 2004-06-04 2005-12-15 Canon Inc Providing device, and communication device, method and program
EP1615386A1 (en) 2004-07-09 2006-01-11 Thomson Licensing Firewall system protecting a community of appliances, appliance participating in the system and method of updating the firewall rules within the system
JP2006050407A (en) 2004-08-06 2006-02-16 Canon Inc Security policy setting method, program, and communication apparatus
US20060104526A1 (en) 2004-11-15 2006-05-18 Yaakov Gringeler System and method for lossless compression of already compressed files
US20060155814A1 (en) * 2004-12-31 2006-07-13 Sony Ericsson Mobile Communications Ab Media client architecture for networked communication devices
US20060159063A1 (en) 2005-01-19 2006-07-20 Gopesh Kumar A System and Method for Businesses to advertise to receive and measure incoming Prospect Leads through a unique, empowered Independent Agent framework
US20060200855A1 (en) 2005-03-07 2006-09-07 Willis Taun E Electronic verification systems
US7107316B2 (en) 2001-09-20 2006-09-12 International Business Machines Corporation Controlling throughput of message requests in a messaging system
US20060230438A1 (en) 2005-04-06 2006-10-12 Ericom Software Ltd. Single sign-on to remote server sessions using the credentials of the local client
US7145898B1 (en) 1996-11-18 2006-12-05 Mci Communications Corporation System, method and article of manufacture for selecting a gateway of a hybrid communication system architecture
US20070083929A1 (en) 2005-05-05 2007-04-12 Craig Sprosts Controlling a message quarantine
US20070143408A1 (en) 2005-12-15 2007-06-21 Brian Daigle Enterprise to enterprise instant messaging
US7266591B1 (en) 2001-12-17 2007-09-04 Verizon Business Global Llc Providing content delivery during a call hold condition
US20070255662A1 (en) 2006-03-30 2007-11-01 Obopay Inc. Authenticating Wireless Person-to-Person Money Transfers
US20070283423A1 (en) 2003-06-05 2007-12-06 Intertrust Technologies Corp. Interoperable systems and methods for peer-to-peer service orchestration
US20080046414A1 (en) 2006-08-18 2008-02-21 Andreas Peter Haub Intelligent Storing and Retrieving in an Enterprise Data System
US20080046457A1 (en) 2006-08-18 2008-02-21 Andreas Peter Haub Configuration of Optimized Custom Properties in a Data Finder Tool
US20080046838A1 (en) 2006-08-18 2008-02-21 Andreas Peter Haub Interactively Setting a Search Value in a Data Finder Tool
US7379993B2 (en) 2001-09-13 2008-05-27 Sri International Prioritizing Bayes network alerts
US20080127137A1 (en) 2006-10-30 2008-05-29 Siemens Aktiengesellschaft Infrastructure service architecture for applications
US20080162642A1 (en) 2006-12-28 2008-07-03 International Business Machines Corporation Availability Filtering for Instant Messaging
US20080192646A1 (en) 2005-10-17 2008-08-14 Huawei Technologies Co., Ltd. Method for Monitoring Quality of Service in Multimedia Communications
US20080270541A1 (en) 2006-04-24 2008-10-30 Ellis Barlow Keener Interactive audio/video method on the internet
US20090070477A1 (en) 2005-03-16 2009-03-12 Marc Baum Controlling Data Routing Among Networks
US20090094684A1 (en) 2007-10-05 2009-04-09 Microsoft Corporation Relay server authentication service
US20090300060A1 (en) 2008-05-28 2009-12-03 Joerg Beringer User-experience-centric architecture for data objects and end user applications
US7636348B2 (en) 2004-06-30 2009-12-22 Bettis Sonny R Distributed IP architecture for telecommunications system with video mail
US20100011282A1 (en) 2008-07-11 2010-01-14 iCyte Pty Ltd. Annotation system and method
US20100023519A1 (en) 2008-07-24 2010-01-28 Safechannel Inc. Feature Based Data Management
US20100024019A1 (en) 2006-05-03 2010-01-28 Emillion Oy Authentication
US20100037324A1 (en) 2008-08-07 2010-02-11 Grant Calum Anders Mckay Computer file control through file tagging
US20100118700A1 (en) 2008-11-07 2010-05-13 Avaya Inc. Automatic Detection and Re-Configuration of Priority Status In Telecommunications Networks
US7730309B2 (en) 2005-07-27 2010-06-01 Zimmermann Philip R Method and system for key management in voice over internet protocol
GB2468759A (en) 2009-03-16 2010-09-22 Avaya Inc Determining user availability by monitoring activity and thence automatically responding to telecommunication invitations
GB2468758A (en) 2009-03-16 2010-09-22 Avaya Inc Determining user availability by monitoring activity and thence automatically responding to telecommunication invitations
US20100246571A1 (en) 2009-03-30 2010-09-30 Avaya Inc. System and method for managing multiple concurrent communication sessions using a graphical call connection metaphor
JP2011504665A (en) 2007-10-17 2011-02-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and configuration for determining security settings
US20110102930A1 (en) 2009-11-05 2011-05-05 Seagate Technology Llc Waveform based bit detection for bit patterned media
US20110206013A1 (en) 2008-11-06 2011-08-25 Masafumi Aramoto Control station, mobile station, mobile communication system and mobile communication method
US8015484B2 (en) 2006-02-09 2011-09-06 Alejandro Backer Reputation system for web pages and online entities
US20110238862A1 (en) 2010-03-29 2011-09-29 Damaka, Inc. System and method for session sweeping between devices
US20120001932A1 (en) 2010-07-02 2012-01-05 Burnett William R Systems and methods for assisting visually-impaired users to view visual content
US20120079031A1 (en) 2007-02-21 2012-03-29 Avaya Canada Corp. Bootstrapping in peer-to-peer networks with network address translators
US20120137231A1 (en) 2010-11-30 2012-05-31 Verizon Patent And Licensing, Inc. User interfaces for facilitating merging and splitting of communication sessions
US20120158862A1 (en) 2010-12-16 2012-06-21 Palo Alto Research Center Incorporated Custodian routing with network address translation in content-centric networks
US20120192086A1 (en) 2011-01-20 2012-07-26 Sam Ghods Real time notification of activities that occur in a web-based collaboration environment
US8250635B2 (en) 2008-07-13 2012-08-21 International Business Machines Corporation Enabling authentication of openID user when requested identity provider is unavailable
US8300632B2 (en) 2008-02-21 2012-10-30 Avaya Inc. System and method for distributed call monitoring/recording using the session initiation protocol (SIP)
EP2529316A2 (en) 2010-01-26 2012-12-05 Social Communications Company Web browser interface for spatial communication environments
US20130002799A1 (en) 2011-06-28 2013-01-03 Mock Wayne E Controlling a Videoconference Based on Context of Touch-Based Gestures
US20130078972A1 (en) 2011-09-28 2013-03-28 Royce A. Levien Network handling of multi-party multi-modality communication
US20130091286A1 (en) 2011-10-10 2013-04-11 Salesforce.Com, Inc. Slipstream bandwidth management algorithm
US20130138829A1 (en) 2011-11-30 2013-05-30 Rovi Technologies Corporation Scalable video coding over real-time transport protocol
US8467308B2 (en) 2001-10-25 2013-06-18 Verizon Business Global Llc Communication session quality indicator
US8494507B1 (en) 2009-02-16 2013-07-23 Handhold Adaptive, LLC Adaptive, portable, multi-sensory aid for the disabled
US8601144B1 (en) 2012-11-27 2013-12-03 Sansay, Inc. Systems and methods for automatic ICE relay candidate creation
US20130321340A1 (en) 2011-02-10 2013-12-05 Samsung Electronics Co., Ltd. Portable device comprising a touch-screen display, and method for controlling same
US20130325934A1 (en) 2012-06-01 2013-12-05 Andrew T. Fausak General client engine with load balancing for client-server communication
US8605711B1 (en) 2001-12-17 2013-12-10 Verizon Business Global Llc Small office or home office (SOHO) IP phone service
US8606950B2 (en) 2005-06-08 2013-12-10 Logitech Europe S.A. System and method for transparently processing multimedia data
US20130346329A1 (en) 2012-05-14 2013-12-26 NetSuite Inc. System and methods for social data sharing capabilities for enterprise information systems
US20140013202A1 (en) 2012-07-03 2014-01-09 Videodesk Web page display system
US20140043994A1 (en) 2013-03-28 2014-02-13 Hcl Technologies Limited Providing Feedback To Media Senders Over Real Time Transport Protocol (RTP)
US20140095724A1 (en) 2012-09-28 2014-04-03 Avaya Inc. Distributed application of enterprise policies to web real-time communications (webrtc) interactive sessions, and related methods, systems, and computer-readable media
US20140095633A1 (en) 2012-09-28 2014-04-03 Avaya Inc. Intelligent notification of requests for real-time online interaction via real-time communications and/or markup protocols, and related methods, systems, and computer-readable media
US20140095731A1 (en) 2012-10-01 2014-04-03 Verizon Patent And Licensing Inc. Content-driven download speed
US8695077B1 (en) 2013-03-14 2014-04-08 Sansay, Inc. Establishing and controlling communication sessions between SIP devices and website application servers
US8693392B2 (en) 2007-02-21 2014-04-08 Avaya Canada Corp. Peer-to-peer communication system and method
US20140108594A1 (en) 2012-10-16 2014-04-17 At&T Intellectual Property I, L.P. Centralized control of user devices via universal ip services registrar/hub
WO2014060008A1 (en) 2012-10-19 2014-04-24 Unify Gmbh & Co. Kg Method and system for creating a virtual sip user agent by use of a webrtc enabled web browser
US20140126715A1 (en) 2012-11-05 2014-05-08 Genesys Telcommunications Laboratories, Inc. System and method for web-based real time communication with optimized transcoding
US20140126708A1 (en) 2012-11-05 2014-05-08 Genesys Telecommunications Laboratories, Inc. System and method for out-of-band communication with contact centers
US20140126714A1 (en) 2012-11-05 2014-05-08 Genesys Telecommunications Laboratories, Inc. System and method for web-based real time communication with contact centers
US20140143823A1 (en) 2012-11-16 2014-05-22 James S. Manchester Situation-dependent dynamic bit rate encoding and distribution of content
US8737596B2 (en) 2007-09-29 2014-05-27 Alcatel Lucent Real-time collaboration center
US20140149512A1 (en) * 2012-11-23 2014-05-29 Calgary Scientific Inc. Methods and systems for peer-to-peer discovery and connection from a collaborative application session
US8744147B2 (en) 2009-06-16 2014-06-03 Robert Torti Graphical digital medical record annotation
US20140161237A1 (en) 2012-12-11 2014-06-12 Genesys Telecommunications Laboratories, Inc. Contact center recording service
US20140201820A1 (en) 2013-01-14 2014-07-17 Futurewei Technologies, Inc. Adapting Federated Web Identity Protocols
US20140219167A1 (en) * 2013-02-05 2014-08-07 Qualcomm Incorporated Quality of service for web client based sessions
US20140223452A1 (en) * 2013-02-04 2014-08-07 Oracle International Corporation Generic model for customizing protocol behavior through javascript
US20140222930A1 (en) 2013-02-04 2014-08-07 Oracle International Corporation Browser/html friendly protocol for real-time communication signaling
US20140222894A1 (en) 2013-02-04 2014-08-07 Oracle International Corporation Javascript api for webrtc
US20140237057A1 (en) 2013-02-21 2014-08-21 Genesys Telecommunications Laboratories, Inc. System and method for processing private messages in a contact center
US20140245143A1 (en) 2013-02-25 2014-08-28 Jerome Saint-Marc Mobile expert desktop
US20140244235A1 (en) 2013-02-27 2014-08-28 Avaya Inc. System and method for transmitting multiple text streams of a communication in different languages
US20140241215A1 (en) 2013-02-22 2014-08-28 Telefonica Digital España, S.L.U. Method and system for combined peer-two-peer (p2p) and central relay server-based telecommunication conferencing using a telephony and conferencing protocol
US8832271B2 (en) 2010-12-03 2014-09-09 International Business Machines Corporation Identity provider instance discovery
US20140258822A1 (en) 2013-03-11 2014-09-11 Futurewei Technologies, Inc. Mechanisms to Compose, Execute, Save, and Retrieve Hyperlink Pipelines in Web Browsers
US20140282399A1 (en) 2013-03-15 2014-09-18 Wolters Kluwer United States Inc. Smart endpoint architecture
WO2014142715A1 (en) * 2013-03-12 2014-09-18 Telefonaktiebolaget L M Ericsson (Publ) Use of webrtc apis for improving communicaton services
US20140280734A1 (en) 2010-10-11 2014-09-18 Damaka, Inc. System and method for a reverse invitation in a hybrid peer-to-peer environment
US20140270104A1 (en) 2013-03-12 2014-09-18 Avaya Inc. SYSTEM AND METHOD FOR RECORDING CALLS IN A WebRTC CONTACT CENTER
US20140282135A1 (en) 2013-03-13 2014-09-18 Genesys Telecommunications Laboratories, Inc. Rich personalized communication context
US20140282903A1 (en) 2013-03-14 2014-09-18 Avaya Inc. MANAGING IDENTITY PROVIDER (IdP) IDENTIFIERS FOR WEB REAL-TIME COMMUNICATIONS (WebRTC) INTERACTIVE FLOWS, AND RELATED METHODS, SYSTEMS, AND COMPUTER-READABLE MEDIA
US20140282054A1 (en) 2013-03-15 2014-09-18 Avaya Inc. Compensating for user sensory impairment in web real-time communications (webrtc) interactive sessions, and related methods, systems, and computer-readable media
US20140269326A1 (en) 2013-03-15 2014-09-18 Google Inc. Dynamic congestion control
US20140282765A1 (en) 2013-03-12 2014-09-18 Centurylink Intellectual Property Llc Abr live to vod system and method
US8856236B2 (en) 2002-04-02 2014-10-07 Verizon Patent And Licensing Inc. Messaging response system
US8861692B1 (en) 2013-05-15 2014-10-14 Verizon Patent And Licensing Inc. Web call access and egress to private network
US20140324979A1 (en) * 2012-11-15 2014-10-30 Huawei Device Co., Ltd. Web Real-Time Communication Call Transferring Method and Apparatus
US20140325078A1 (en) * 2013-04-26 2014-10-30 Chang Hong Shan Architecture for web-based real-time communications (webrtc) to access internet protocol multimedia subsystem (ims)
US20140344169A1 (en) 2013-05-15 2014-11-20 Verizon Patent And Licensing Inc. Call transfers for web-delivered calls
WO2014190094A1 (en) 2013-05-21 2014-11-27 Ecrio, Inc. Real-time rich communications client architecture
US20140365676A1 (en) 2013-06-07 2014-12-11 Avaya Inc. Bandwidth-efficient archiving of real-time interactive flows, and related methods, systems, and computer-readable media
US20140379931A1 (en) * 2013-06-21 2014-12-25 Verizon Patent And Licensing Inc. Webrtc data channel facilitating ims support of rcs features
US20150006610A1 (en) 2013-06-30 2015-01-01 Avaya Inc. Virtual web real-time communications (webrtc) gateways, and related methods, systems, and computer-readable media
US20150002614A1 (en) 2012-02-13 2015-01-01 Tata Communications (America) Inc. Video session manager and method for enabling and managing video calling and telepresence communications sessions across multiple domains
US20150002619A1 (en) 2013-06-30 2015-01-01 Avaya Inc. Scalable web real-time communications (webrtc) media engines, and related methods, systems, and computer-readable media
US20150006611A1 (en) 2013-06-30 2015-01-01 Avaya Inc. Back-to-back virtual web real-time communications (webrtc) agents, and related methods, systems, and computer-readable media
US20150026473A1 (en) 2013-07-17 2015-01-22 Avaya Inc. Verifying privacy of web real-time communications (webrtc) media channels via corresponding webrtc data channels, and related methods, systems, and computer-readable media
US20150039760A1 (en) 2013-07-31 2015-02-05 Avaya Inc. Remotely controlling web real-time communications (webrtc) client functionality via webrtc data channels, and related methods, systems, and computer-readable media
US20150036690A1 (en) 2013-07-30 2015-02-05 Siemens Enterprise Communications Gmbh & Co. Kg Apparatus and method for communications involving a legacy device
US20150039687A1 (en) 2013-07-31 2015-02-05 Avaya Inc. Acquiring and correlating web real-time communications (webrtc) interactive flow characteristics, and related methods, systems, and computer-readable media
US20150052067A1 (en) 2013-08-13 2015-02-19 Amazon Technologies, Inc. Remote support of computing devices
WO2015032277A1 (en) 2013-09-05 2015-03-12 华为终端有限公司 Transmission method and device for media stream in video conference
US20150106837A1 (en) * 2013-10-14 2015-04-16 Futurewei Technologies Inc. System and method to dynamically synchronize hierarchical hypermedia based on resource description framework (rdf)
US20150180825A1 (en) 2013-12-20 2015-06-25 Futurewei Technologies Inc. METHOD OF IMS (SIP NETWORK) webRTC OPTIMIZED P2P COMMUNICATION
US20150180748A1 (en) * 2013-12-20 2015-06-25 Futurewei Technologies Inc. METHOD AND APPARATUS OF WebRTC MEDIA CONTROL
US20150286630A1 (en) * 2014-04-08 2015-10-08 TitleFlow LLC Natural language processing for extracting conveyance graphs
US20150304379A1 (en) * 2014-04-17 2015-10-22 Avaya Inc. PROVIDING WEB REAL-TIME COMMUNICATIONS (WebRTC) MEDIA SERVICES VIA WebRTC-ENABLED MEDIA SERVERS, AND RELATED METHODS, SYSTEMS, AND COMPUTER-READABLE MEDIA

Patent Citations (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2295747A (en) 1994-11-29 1996-06-05 Mitel Corp Visual indication of a communication connection
US7145898B1 (en) 1996-11-18 2006-12-05 Mci Communications Corporation System, method and article of manufacture for selecting a gateway of a hybrid communication system architecture
US6714967B1 (en) 1999-07-30 2004-03-30 Microsoft Corporation Integration of a computer-based message priority system with mobile electronic devices
JP2002207683A (en) 2001-01-09 2002-07-26 Nippon Telegraph & Telephone West Corp Communication system
JP2002374318A (en) 2001-03-15 2002-12-26 Microsoft Corp System and method for identifying and establishing preferred modalities or channels for communication based on participant preferences and context
US20020161685A1 (en) 2001-04-25 2002-10-31 Michael Dwinnell Broadcasting information and providing data access over the internet to investors and managers on demand
US20040167984A1 (en) 2001-07-06 2004-08-26 Zone Labs, Inc. System Providing Methodology for Access Control with Cooperative Enforcement
US7379993B2 (en) 2001-09-13 2008-05-27 Sri International Prioritizing Bayes network alerts
US7107316B2 (en) 2001-09-20 2006-09-12 International Business Machines Corporation Controlling throughput of message requests in a messaging system
US8467308B2 (en) 2001-10-25 2013-06-18 Verizon Business Global Llc Communication session quality indicator
US20030112766A1 (en) 2001-12-13 2003-06-19 Matthias Riedel Adaptive quality-of-service reservation and pre-allocation for mobile systems
US20030120599A1 (en) 2001-12-13 2003-06-26 Agboatwalla Adnan M. System, method, and article of manufacture for generating a customizable network user interface
US7266591B1 (en) 2001-12-17 2007-09-04 Verizon Business Global Llc Providing content delivery during a call hold condition
US8605711B1 (en) 2001-12-17 2013-12-10 Verizon Business Global Llc Small office or home office (SOHO) IP phone service
US20030131245A1 (en) 2002-01-04 2003-07-10 Michael Linderman Communication security system
US20030188193A1 (en) 2002-03-28 2003-10-02 International Business Machines Corporation Single sign on for kerberos authentication
US8856236B2 (en) 2002-04-02 2014-10-07 Verizon Patent And Licensing Inc. Messaging response system
US20040019494A1 (en) 2002-05-03 2004-01-29 Manugistics, Inc. System and method for sharing information relating to supply chain transactions in multiple environments
US20040081173A1 (en) 2002-10-15 2004-04-29 Cisco Technology, Inc. Configuration of enterprise gateways
US20040093515A1 (en) 2002-11-12 2004-05-13 Microsoft Corporation Cross platform network authentication and authorization model
US20040216173A1 (en) 2003-04-11 2004-10-28 Peter Horoszowski Video archiving and processing method and apparatus
US20070283423A1 (en) 2003-06-05 2007-12-06 Intertrust Technologies Corp. Interoperable systems and methods for peer-to-peer service orchestration
US20050084082A1 (en) 2003-10-15 2005-04-21 Microsoft Corporation Designs, interfaces, and policies for systems that enhance communication and minimize disruption by encoding preferences and situations
US20050177380A1 (en) 2004-02-09 2005-08-11 Pritchard Gordon W. System, computer program and method for enabling individual client users to recruit, connect to, and manage a remote workforce through a shared network
JP2005346556A (en) 2004-06-04 2005-12-15 Canon Inc Providing device, and communication device, method and program
US7636348B2 (en) 2004-06-30 2009-12-22 Bettis Sonny R Distributed IP architecture for telecommunications system with video mail
EP1615386A1 (en) 2004-07-09 2006-01-11 Thomson Licensing Firewall system protecting a community of appliances, appliance participating in the system and method of updating the firewall rules within the system
JP2006050407A (en) 2004-08-06 2006-02-16 Canon Inc Security policy setting method, program, and communication apparatus
US20060104526A1 (en) 2004-11-15 2006-05-18 Yaakov Gringeler System and method for lossless compression of already compressed files
US20060155814A1 (en) * 2004-12-31 2006-07-13 Sony Ericsson Mobile Communications Ab Media client architecture for networked communication devices
US20060159063A1 (en) 2005-01-19 2006-07-20 Gopesh Kumar A System and Method for Businesses to advertise to receive and measure incoming Prospect Leads through a unique, empowered Independent Agent framework
US20060200855A1 (en) 2005-03-07 2006-09-07 Willis Taun E Electronic verification systems
US20090070477A1 (en) 2005-03-16 2009-03-12 Marc Baum Controlling Data Routing Among Networks
US20060230438A1 (en) 2005-04-06 2006-10-12 Ericom Software Ltd. Single sign-on to remote server sessions using the credentials of the local client
US20070083929A1 (en) 2005-05-05 2007-04-12 Craig Sprosts Controlling a message quarantine
US8606950B2 (en) 2005-06-08 2013-12-10 Logitech Europe S.A. System and method for transparently processing multimedia data
US7730309B2 (en) 2005-07-27 2010-06-01 Zimmermann Philip R Method and system for key management in voice over internet protocol
US20080192646A1 (en) 2005-10-17 2008-08-14 Huawei Technologies Co., Ltd. Method for Monitoring Quality of Service in Multimedia Communications
US20070143408A1 (en) 2005-12-15 2007-06-21 Brian Daigle Enterprise to enterprise instant messaging
US8015484B2 (en) 2006-02-09 2011-09-06 Alejandro Backer Reputation system for web pages and online entities
US20070255662A1 (en) 2006-03-30 2007-11-01 Obopay Inc. Authenticating Wireless Person-to-Person Money Transfers
US20080270541A1 (en) 2006-04-24 2008-10-30 Ellis Barlow Keener Interactive audio/video method on the internet
US20100024019A1 (en) 2006-05-03 2010-01-28 Emillion Oy Authentication
US20080046414A1 (en) 2006-08-18 2008-02-21 Andreas Peter Haub Intelligent Storing and Retrieving in an Enterprise Data System
US20080046457A1 (en) 2006-08-18 2008-02-21 Andreas Peter Haub Configuration of Optimized Custom Properties in a Data Finder Tool
US20080046838A1 (en) 2006-08-18 2008-02-21 Andreas Peter Haub Interactively Setting a Search Value in a Data Finder Tool
US20080127137A1 (en) 2006-10-30 2008-05-29 Siemens Aktiengesellschaft Infrastructure service architecture for applications
US20080162642A1 (en) 2006-12-28 2008-07-03 International Business Machines Corporation Availability Filtering for Instant Messaging
US8693392B2 (en) 2007-02-21 2014-04-08 Avaya Canada Corp. Peer-to-peer communication system and method
US20120079031A1 (en) 2007-02-21 2012-03-29 Avaya Canada Corp. Bootstrapping in peer-to-peer networks with network address translators
US8737596B2 (en) 2007-09-29 2014-05-27 Alcatel Lucent Real-time collaboration center
US20090094684A1 (en) 2007-10-05 2009-04-09 Microsoft Corporation Relay server authentication service
JP2011504665A (en) 2007-10-17 2011-02-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and configuration for determining security settings
US8300632B2 (en) 2008-02-21 2012-10-30 Avaya Inc. System and method for distributed call monitoring/recording using the session initiation protocol (SIP)
US20090300060A1 (en) 2008-05-28 2009-12-03 Joerg Beringer User-experience-centric architecture for data objects and end user applications
US20100011282A1 (en) 2008-07-11 2010-01-14 iCyte Pty Ltd. Annotation system and method
US8250635B2 (en) 2008-07-13 2012-08-21 International Business Machines Corporation Enabling authentication of openID user when requested identity provider is unavailable
US20100023519A1 (en) 2008-07-24 2010-01-28 Safechannel Inc. Feature Based Data Management
US20100037324A1 (en) 2008-08-07 2010-02-11 Grant Calum Anders Mckay Computer file control through file tagging
US20110206013A1 (en) 2008-11-06 2011-08-25 Masafumi Aramoto Control station, mobile station, mobile communication system and mobile communication method
US20100118700A1 (en) 2008-11-07 2010-05-13 Avaya Inc. Automatic Detection and Re-Configuration of Priority Status In Telecommunications Networks
US8494507B1 (en) 2009-02-16 2013-07-23 Handhold Adaptive, LLC Adaptive, portable, multi-sensory aid for the disabled
GB2468759A (en) 2009-03-16 2010-09-22 Avaya Inc Determining user availability by monitoring activity and thence automatically responding to telecommunication invitations
GB2468758A (en) 2009-03-16 2010-09-22 Avaya Inc Determining user availability by monitoring activity and thence automatically responding to telecommunication invitations
US20100246571A1 (en) 2009-03-30 2010-09-30 Avaya Inc. System and method for managing multiple concurrent communication sessions using a graphical call connection metaphor
US8744147B2 (en) 2009-06-16 2014-06-03 Robert Torti Graphical digital medical record annotation
US20110102930A1 (en) 2009-11-05 2011-05-05 Seagate Technology Llc Waveform based bit detection for bit patterned media
EP2529316A2 (en) 2010-01-26 2012-12-05 Social Communications Company Web browser interface for spatial communication environments
US20110238862A1 (en) 2010-03-29 2011-09-29 Damaka, Inc. System and method for session sweeping between devices
US20120001932A1 (en) 2010-07-02 2012-01-05 Burnett William R Systems and methods for assisting visually-impaired users to view visual content
US20140280734A1 (en) 2010-10-11 2014-09-18 Damaka, Inc. System and method for a reverse invitation in a hybrid peer-to-peer environment
US20120137231A1 (en) 2010-11-30 2012-05-31 Verizon Patent And Licensing, Inc. User interfaces for facilitating merging and splitting of communication sessions
US8832271B2 (en) 2010-12-03 2014-09-09 International Business Machines Corporation Identity provider instance discovery
US20120158862A1 (en) 2010-12-16 2012-06-21 Palo Alto Research Center Incorporated Custodian routing with network address translation in content-centric networks
US20120192086A1 (en) 2011-01-20 2012-07-26 Sam Ghods Real time notification of activities that occur in a web-based collaboration environment
US20130321340A1 (en) 2011-02-10 2013-12-05 Samsung Electronics Co., Ltd. Portable device comprising a touch-screen display, and method for controlling same
US20130002799A1 (en) 2011-06-28 2013-01-03 Mock Wayne E Controlling a Videoconference Based on Context of Touch-Based Gestures
US20130078972A1 (en) 2011-09-28 2013-03-28 Royce A. Levien Network handling of multi-party multi-modality communication
US20130091286A1 (en) 2011-10-10 2013-04-11 Salesforce.Com, Inc. Slipstream bandwidth management algorithm
US20130138829A1 (en) 2011-11-30 2013-05-30 Rovi Technologies Corporation Scalable video coding over real-time transport protocol
US20150002614A1 (en) 2012-02-13 2015-01-01 Tata Communications (America) Inc. Video session manager and method for enabling and managing video calling and telepresence communications sessions across multiple domains
US20130346329A1 (en) 2012-05-14 2013-12-26 NetSuite Inc. System and methods for social data sharing capabilities for enterprise information systems
US20130325934A1 (en) 2012-06-01 2013-12-05 Andrew T. Fausak General client engine with load balancing for client-server communication
US20140013202A1 (en) 2012-07-03 2014-01-09 Videodesk Web page display system
US20140095633A1 (en) 2012-09-28 2014-04-03 Avaya Inc. Intelligent notification of requests for real-time online interaction via real-time communications and/or markup protocols, and related methods, systems, and computer-readable media
US20140095724A1 (en) 2012-09-28 2014-04-03 Avaya Inc. Distributed application of enterprise policies to web real-time communications (webrtc) interactive sessions, and related methods, systems, and computer-readable media
US20140095731A1 (en) 2012-10-01 2014-04-03 Verizon Patent And Licensing Inc. Content-driven download speed
US20140108594A1 (en) 2012-10-16 2014-04-17 At&T Intellectual Property I, L.P. Centralized control of user devices via universal ip services registrar/hub
WO2014060008A1 (en) 2012-10-19 2014-04-24 Unify Gmbh & Co. Kg Method and system for creating a virtual sip user agent by use of a webrtc enabled web browser
US20140126708A1 (en) 2012-11-05 2014-05-08 Genesys Telecommunications Laboratories, Inc. System and method for out-of-band communication with contact centers
US20140126715A1 (en) 2012-11-05 2014-05-08 Genesys Telcommunications Laboratories, Inc. System and method for web-based real time communication with optimized transcoding
US20140126714A1 (en) 2012-11-05 2014-05-08 Genesys Telecommunications Laboratories, Inc. System and method for web-based real time communication with contact centers
US8867731B2 (en) 2012-11-05 2014-10-21 Genesys Telecommunications Laboratories, Inc. System and method for web-based real time communication with optimized transcoding
US20140324979A1 (en) * 2012-11-15 2014-10-30 Huawei Device Co., Ltd. Web Real-Time Communication Call Transferring Method and Apparatus
US20140143823A1 (en) 2012-11-16 2014-05-22 James S. Manchester Situation-dependent dynamic bit rate encoding and distribution of content
US20140149512A1 (en) * 2012-11-23 2014-05-29 Calgary Scientific Inc. Methods and systems for peer-to-peer discovery and connection from a collaborative application session
US8601144B1 (en) 2012-11-27 2013-12-03 Sansay, Inc. Systems and methods for automatic ICE relay candidate creation
US20140161237A1 (en) 2012-12-11 2014-06-12 Genesys Telecommunications Laboratories, Inc. Contact center recording service
US20140201820A1 (en) 2013-01-14 2014-07-17 Futurewei Technologies, Inc. Adapting Federated Web Identity Protocols
US20140223452A1 (en) * 2013-02-04 2014-08-07 Oracle International Corporation Generic model for customizing protocol behavior through javascript
US20140222894A1 (en) 2013-02-04 2014-08-07 Oracle International Corporation Javascript api for webrtc
US20140222930A1 (en) 2013-02-04 2014-08-07 Oracle International Corporation Browser/html friendly protocol for real-time communication signaling
WO2014123738A1 (en) 2013-02-05 2014-08-14 Qualcomm Incorporated Quality of service for web client based sessions
US20140219167A1 (en) * 2013-02-05 2014-08-07 Qualcomm Incorporated Quality of service for web client based sessions
US20140237057A1 (en) 2013-02-21 2014-08-21 Genesys Telecommunications Laboratories, Inc. System and method for processing private messages in a contact center
US20140241215A1 (en) 2013-02-22 2014-08-28 Telefonica Digital España, S.L.U. Method and system for combined peer-two-peer (p2p) and central relay server-based telecommunication conferencing using a telephony and conferencing protocol
US20140245143A1 (en) 2013-02-25 2014-08-28 Jerome Saint-Marc Mobile expert desktop
US20140244235A1 (en) 2013-02-27 2014-08-28 Avaya Inc. System and method for transmitting multiple text streams of a communication in different languages
US20140258822A1 (en) 2013-03-11 2014-09-11 Futurewei Technologies, Inc. Mechanisms to Compose, Execute, Save, and Retrieve Hyperlink Pipelines in Web Browsers
US20140282765A1 (en) 2013-03-12 2014-09-18 Centurylink Intellectual Property Llc Abr live to vod system and method
WO2014142715A1 (en) * 2013-03-12 2014-09-18 Telefonaktiebolaget L M Ericsson (Publ) Use of webrtc apis for improving communicaton services
US20140270104A1 (en) 2013-03-12 2014-09-18 Avaya Inc. SYSTEM AND METHOD FOR RECORDING CALLS IN A WebRTC CONTACT CENTER
US20140282135A1 (en) 2013-03-13 2014-09-18 Genesys Telecommunications Laboratories, Inc. Rich personalized communication context
US20140282903A1 (en) 2013-03-14 2014-09-18 Avaya Inc. MANAGING IDENTITY PROVIDER (IdP) IDENTIFIERS FOR WEB REAL-TIME COMMUNICATIONS (WebRTC) INTERACTIVE FLOWS, AND RELATED METHODS, SYSTEMS, AND COMPUTER-READABLE MEDIA
US8695077B1 (en) 2013-03-14 2014-04-08 Sansay, Inc. Establishing and controlling communication sessions between SIP devices and website application servers
US20140269326A1 (en) 2013-03-15 2014-09-18 Google Inc. Dynamic congestion control
US20140282054A1 (en) 2013-03-15 2014-09-18 Avaya Inc. Compensating for user sensory impairment in web real-time communications (webrtc) interactive sessions, and related methods, systems, and computer-readable media
US20140282399A1 (en) 2013-03-15 2014-09-18 Wolters Kluwer United States Inc. Smart endpoint architecture
US20140043994A1 (en) 2013-03-28 2014-02-13 Hcl Technologies Limited Providing Feedback To Media Senders Over Real Time Transport Protocol (RTP)
US20140325078A1 (en) * 2013-04-26 2014-10-30 Chang Hong Shan Architecture for web-based real-time communications (webrtc) to access internet protocol multimedia subsystem (ims)
US8861692B1 (en) 2013-05-15 2014-10-14 Verizon Patent And Licensing Inc. Web call access and egress to private network
US20140344169A1 (en) 2013-05-15 2014-11-20 Verizon Patent And Licensing Inc. Call transfers for web-delivered calls
US10055742B2 (en) * 2013-05-15 2018-08-21 Verizon Patent And Licensing Inc. Call transfers for web-delivered calls
WO2014190094A1 (en) 2013-05-21 2014-11-27 Ecrio, Inc. Real-time rich communications client architecture
US20140348044A1 (en) * 2013-05-21 2014-11-27 Ecrio, Inc. Real-Time Rich Communications Client Architecture
US20140365676A1 (en) 2013-06-07 2014-12-11 Avaya Inc. Bandwidth-efficient archiving of real-time interactive flows, and related methods, systems, and computer-readable media
US20140379931A1 (en) * 2013-06-21 2014-12-25 Verizon Patent And Licensing Inc. Webrtc data channel facilitating ims support of rcs features
GB2517833A (en) 2013-06-30 2015-03-04 Avaya Inc Back-to-back virtual web real-time communications (WebRTC) agents, and related methods, systems, and computer-readable media
US20150002619A1 (en) 2013-06-30 2015-01-01 Avaya Inc. Scalable web real-time communications (webrtc) media engines, and related methods, systems, and computer-readable media
US20150006611A1 (en) 2013-06-30 2015-01-01 Avaya Inc. Back-to-back virtual web real-time communications (webrtc) agents, and related methods, systems, and computer-readable media
US20150006610A1 (en) 2013-06-30 2015-01-01 Avaya Inc. Virtual web real-time communications (webrtc) gateways, and related methods, systems, and computer-readable media
US20150026473A1 (en) 2013-07-17 2015-01-22 Avaya Inc. Verifying privacy of web real-time communications (webrtc) media channels via corresponding webrtc data channels, and related methods, systems, and computer-readable media
US20150036690A1 (en) 2013-07-30 2015-02-05 Siemens Enterprise Communications Gmbh & Co. Kg Apparatus and method for communications involving a legacy device
US20150039760A1 (en) 2013-07-31 2015-02-05 Avaya Inc. Remotely controlling web real-time communications (webrtc) client functionality via webrtc data channels, and related methods, systems, and computer-readable media
US20150039687A1 (en) 2013-07-31 2015-02-05 Avaya Inc. Acquiring and correlating web real-time communications (webrtc) interactive flow characteristics, and related methods, systems, and computer-readable media
US20150052067A1 (en) 2013-08-13 2015-02-19 Amazon Technologies, Inc. Remote support of computing devices
WO2015032277A1 (en) 2013-09-05 2015-03-12 华为终端有限公司 Transmission method and device for media stream in video conference
US20150106837A1 (en) * 2013-10-14 2015-04-16 Futurewei Technologies Inc. System and method to dynamically synchronize hierarchical hypermedia based on resource description framework (rdf)
US20150180825A1 (en) 2013-12-20 2015-06-25 Futurewei Technologies Inc. METHOD OF IMS (SIP NETWORK) webRTC OPTIMIZED P2P COMMUNICATION
US20150180748A1 (en) * 2013-12-20 2015-06-25 Futurewei Technologies Inc. METHOD AND APPARATUS OF WebRTC MEDIA CONTROL
US20150286630A1 (en) * 2014-04-08 2015-10-08 TitleFlow LLC Natural language processing for extracting conveyance graphs
US20150304379A1 (en) * 2014-04-17 2015-10-22 Avaya Inc. PROVIDING WEB REAL-TIME COMMUNICATIONS (WebRTC) MEDIA SERVICES VIA WebRTC-ENABLED MEDIA SERVERS, AND RELATED METHODS, SYSTEMS, AND COMPUTER-READABLE MEDIA

Non-Patent Citations (81)

* Cited by examiner, † Cited by third party
Title
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 14/050,891, dated Sep. 29, 2015, 4 pages.
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 14/068,839, dated Feb. 12, 2016, 4 pages.
Advisory Action for U.S. Appl. No. 13/803,292, dated Aug. 21, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 13/835,913, dated Jun. 10, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 13/931,967, dated Nov. 3, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 13/931,970, dated Nov. 5, 2015, 3 pages.
Advisory Action for U.S. Appl. No. 14/037,440, dated May 20, 2015, 3 pages.
Andreasen et al., "Session Description Protocol (SDP): Security Descriptions for Media Streams," Network Working Group, Request for Comments: 4568, Standards Track, The Internet Society, Jul. 2006, 40 pages.
Author Unknown, "WebRTC," WebRTC.org, Date Accessed: Jan. 26, 2016, 4 pages, http://webrtc.org/.
Barth, A. "The Web Origin Concept," Internet Engineering Task Force (IETF), Request for Comments 6454 (RFC 6454), Dec. 2011, 19 pages, http://www.ietf.org/rfc/rfc6454.txt.
Baugher et al., "The Secure Real-time Transport Protocol (SRTP)," Network Working Group, Request for Comments: 3711, Standards Track, The Internet Society, Mar. 2004, 51 pages.
Bergkvist, Adam et al., "WebRIC 1.0: Real-time Communication Between Browsers," W3C Working Draft, Feb. 9, 2012, http://www.w3.org/TR/2012/WD-webrtc-20120209/, 42 pages.
Berners-Lee, Tim, "Socially Aware Cloud Storage," Notes on web design, Aug. 17, 2009, http://www.w3.org/DesignIssues/CloudStorage.html, 9 pages.
Chandra, Ramesh et al., "Separating Web Applications from User Data Storage with BStore," presented at the USENIX Conference on Web Application Development, Jun. 2010, Boston, Massachusettes, 13 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/931,968, dated Apr. 24, 2015, 4 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/944,368, dated Jul. 23, 2015, 4 pages.
Davids, Carol et al., "SIP APIs for Voice and Video Communications on the Web," presented at the International Conference on Principles, Systems and Applications of IP Telecommunications (IPTcomm), Aug. 2011, Chicago, Illinois, 7 pages.
Examination Report for British Patent Application GB1411580.2, dated Aug. 21, 2015, 1 page.
Examination Report for British Patent Application GB1411584.4, dated Aug. 21, 2015, 1 page.
Extended European Search Report for European Patent Application 15161452.6, dated Jun. 23, 2015, 5 pages.
Final Office Action and Examiner Initiated Interview Summary for U.S. Appl. No. 14/050,891, dated Jun. 29, 2015, 11 pages.
Final Office Action for U.S. Appl. No. 13/803,292, dated Jun. 12, 2015, 17 pages.
Final Office Action for U.S. Appl. No. 13/835,913, dated Mar. 26, 2015, 17 pages.
Final Office Action for U.S. Appl. No. 13/931,967, dated Aug. 20, 2015, 12 pages.
Final Office Action for U.S. Appl. No. 13/931,970, dated Aug. 27, 2015, 10 pages.
Final Office Action for U.S. Appl. No. 13/955,023, dated Jul. 20, 2015, 17 pages.
Final Office Action for U.S. Appl. No. 14/037,440, dated Feb. 11, 2015, 19 pages.
Final Office Action for U.S. Appl. No. 14/068,839, dated Sep. 9, 2015, 17 pages.
Final Office Action for U.S. Appl. No. 14/141,798, dated Dec. 24, 2015, 10 pages.
Fischl, J. et al., "Framework for Establishing a Secure Real-time Transport Protocol (SRTP) Security Context Using Datagram Transport Layer Security (DTLS)," Internet Engineering Task Force (IETF), Request for Comments (RFC) 5763, May 2010, 26 pages.
Geambasu, Roxana et al., "Organizing and Sharing Distributed Personal Web-Service Data," presented at the International World Wide Web Conference, Apr. 21-25, 2008, Beijing, China, International World Wide Web Conference Committee, pp. 755-764.
Hsu, F. et al., "Secure File System Services for Web 2.0 Applications," presented at the ACM Cloud Computing Security Workshop, Nov. 13, 2009, Chicago, Illinois, Association for Computing Machinery, 7 pages.
Jesup, R. et al., "DTLS Encapsulation of SCTP Packets for RTCWEB," IETF: Network Working Group, Internet Draft, Feb. 16, 2013, 6 pages.
Johnston et al., "WebRTC: APIs and RTCWEB Protocols of the HTML5 Real-Time Web," (Book), Second Edition, Smashwords Edition, Digital Codex LLC, Jun. 2013, 254 pages.
Johnston, A. et al., "An Origin Attribute for the STUN Protocol," Internet Engineering Task Force (IETF), Internet-Draft, Jul. 20, 2014, 14 pages, https://tools.ietf.org/html/draft-ietf-tram-stun-origin-00.
Johnston, Alan et al., "Taking on WebRTC in an Enterprise," IEEE Communications Magazine, Apr. 2013, pp. 48-54, vol. 51, Issue 4.
Joshi, R., "Data-Oriented Architecture: A Loosley Coupled Real-Time SOA," Whitepaper, Aug. 2007, Real-Time Innovations, Inc., http://rtcgroup.com/whitepapers/files/RTI_DataOrientedArchitecture_WhitePaper.pdf, 54 pages.
Loreto, Salvatore et al., "Real-Time Communications in the Web: Issues, Achievements, and Ongoing Standardization Efforts," IEEE Internet Computing, vol. 16, Issue 5, IEEE Computer Society, Oct. 2, 2012, pp. 68-73.
Mahy et al., "Traversal Using Relays around NAT (TURN) : Relay Extensions to Session Traversal Utilities for NAT (STUN)," Internet Engineering Task Force, Request for Comments: 5766, Standards Track, IETF Trust, Apr. 2010, 61 pages.
McGrew et al., "Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-Time Transport Protocol (SRTP)," Internet Engineering Task Force, Request for Comments: 5764, Standards Track, IETF Trust, May 2010, 24 pages.
Non-Final Office Action for U.S. Appl. No. 13/803,292, dated Jan. 27, 2015, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/803,292, dated Oct. 9, 2015, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/835,913, dated Nov. 20, 2014, 15 pages.
Non-Final Office Action for U.S. Appl. No. 13/835,913, dated Sep. 3, 2015, 19 pages.
Non-Final Office Action for U.S. Appl. No. 13/863,662, dated Sep. 25, 2015, 23 pages.
Non-Final Office Action for U.S. Appl. No. 13/912,520, dated Sep. 9, 2015, 21 pages.
Non-Final Office Action for U.S. Appl. No. 13/931,967, dated May 5, 2015, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/931,968, dated Dec. 8, 2014, 6 pages.
Non-Final Office Action for U.S. Appl. No. 13/931,970, dated Feb. 23, 2016, 11 pages.
Non-Final Office Action for U.S. Appl. No. 13/931,970, dated May 7, 2015, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/955,023, dated Dec. 9, 2015, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/955,023, dated Feb. 2, 2015, 12 pages.
Non-Final Office Action for U.S. Appl. No. 13/955,711, dated Nov. 9, 2015, 10 pages.
Non-Final Office Action for U.S. Appl. No. 14/037,440, dated Oct. 22, 2015, 15 pages.
Non-Final Office Action for U.S. Appl. No. 14/037,440, dated Sep. 12, 2014, 15 pages.
Non-Final Office Action for U.S. Appl. No. 14/050,891, dated Jan. 29, 2015, 9 pages.
Non-Final Office Action for U.S. Appl. No. 14/068,839, dated Feb. 20, 2015, 15 pages.
Non-Final Office Action for U.S. Appl. No. 14/068,943, dated Dec. 2, 2015, 16 pages.
Non-Final Office Action for U.S. Appl. No. 14/141,798, dated Jul. 17, 2015, 13 pages.
Non-Final Office Action for U.S. Appl. No. 14/174,371, dated Feb. 18, 2016, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/255,429, dated Nov. 9, 2015, 26 pages.
Notice of Allowance for U.S. Appl. No. 13/863,662, dated Feb. 1, 2016, 17 pages.
Notice of Allowance for U.S. Appl. No. 13/931,968, dated Mar. 23, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/944,368, dated Apr. 1, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/050,891, dated Nov. 10, 2015, 10 pages.
Notice of Reason for Refusal for Japanese Patent Application 2013-201228, dispatched Jun. 11, 2015, 8 pages.
Notification of Reasons for Refusal for Japanese Patent Application 2013-201221, dated Aug. 25, 2015, 8 pages.
Rescorla, E., "Security Considerations for RTC-Web," IETF RTCWEB, Internet Draft, Jan. 22, 2013, 16 pages.
Rescorla, E., "WebRTC Security Architecture," IETF RTCWEB, Internet Draft, Jul. 14, 2013, 30 pages.
Rodriguez, Pedro et al., "Advanced Videoconferencing Services Based on WebRTC," IADIS International Conferences Web Based Communities and Social Media 2012 and Collaborative Technologies 2012, Jul. 17-23, 2012, pp. 180-184, http://www.iadisportal.org/wbc-2012-proceedings.
Search Report for British patent application GB1317121.0 dated Mar. 14, 2014, 3 pages.
Search Report for British patent application GB1317122.8 dated Mar. 11, 2014, 3 pages.
Search Report for British patent application GB1411580.2 dated Dec. 30, 2014, 4 pages.
Search Report for British patent application GB1411584.4 dated Dec. 30, 2014, 4 pages.
Search Report for British Patent Application GB1419334.6, dated Apr. 28, 2015, 6 pages.
Search Report for British Patent Application GB1419338.7, dated Apr. 27, 2015, 4 pages.
Search Report for British Patent Application No. GB1423089.0, dated Jul. 6, 2015, 4 pages.
Singh, Kundan et al., "Building Communicating Web Applications Leveraging Endpoints and Cloud Resource Service," Presented at the Sixth International Conference on Cloud Computing, Jun. 28, 2013, Santa Clara, California, IEEE Computer Society, pp. 486-493.
Singh, Kundan et al., "Private Overlay of Enterprise Social Data and Interactions in the Public Web Context," presented at the 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing (Collaboratecom), Oct. 20-23, 2013, Austin, Texas, IEEE, 10 pages.
Vahdat, Amin et al., "WebFS: A Global Cache Coherent File System," UC Berkeley, Dec. 1996, retrieved Sep. 16, 2014 from https://www.cs.duke.edu/˜vahdat/webfs/webfs.html, 12 pages.
Zimmermann et al., "ZRTP: Media Path Key Agreement for Unicast Secure RTP," Internet Engineering Task Force, Request for Comments: 6189, Informational, IETF Trust, Apr. 2011, 102 pages.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240022494A1 (en) * 2020-08-20 2024-01-18 Cyara Solutions Pty Ltd System and method for testing real-time communications between browsers and contact centers
US12095950B2 (en) * 2020-08-20 2024-09-17 Cyara Solutions Pty Ltd System and method for testing real-time communications between browsers and contact centers
US20220166881A1 (en) * 2020-11-25 2022-05-26 Jpmorgan Chase Bank, N.A. Systems and methods for call routing using generic call control platforms
US20220201069A1 (en) * 2020-12-22 2022-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Dtls/sctp enhancements for ran signaling purposes
US11722561B2 (en) * 2020-12-22 2023-08-08 Telefonaktiebolaget Lm Ericsson (Publ) DTLS/SCTP enhancements for RAN signaling purposes

Also Published As

Publication number Publication date
US20150304379A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
US10581927B2 (en) Providing web real-time communications (WebRTC) media services via WebRTC-enabled media servers, and related methods, systems, and computer-readable media
US9525718B2 (en) Back-to-back virtual web real-time communications (WebRTC) agents, and related methods, systems, and computer-readable media
US9912705B2 (en) Enhancing media characteristics during web real-time communications (WebRTC) interactive sessions by using session initiation protocol (SIP) endpoints, and related methods, systems, and computer-readable media
US9065969B2 (en) Scalable web real-time communications (WebRTC) media engines, and related methods, systems, and computer-readable media
US20150006610A1 (en) Virtual web real-time communications (webrtc) gateways, and related methods, systems, and computer-readable media
US9294458B2 (en) Managing identity provider (IdP) identifiers for web real-time communications (WebRTC) interactive flows, and related methods, systems, and computer-readable media
US9614890B2 (en) Acquiring and correlating web real-time communications (WEBRTC) interactive flow characteristics, and related methods, systems, and computer-readable media
US20150039760A1 (en) Remotely controlling web real-time communications (webrtc) client functionality via webrtc data channels, and related methods, systems, and computer-readable media
EP2933975B1 (en) Application of enterprise policies to web real-time communications (webrtc) interactive sessions
US9769214B2 (en) Providing reliable session initiation protocol (SIP) signaling for web real-time communications (WEBRTC) interactive flows, and related methods, systems, and computer-readable media
US10225212B2 (en) Providing network management based on monitoring quality of service (QOS) characteristics of web real-time communications (WEBRTC) interactive flows, and related methods, systems, and computer-readable media
US20140282054A1 (en) Compensating for user sensory impairment in web real-time communications (webrtc) interactive sessions, and related methods, systems, and computer-readable media
US20140095724A1 (en) Distributed application of enterprise policies to web real-time communications (webrtc) interactive sessions, and related methods, systems, and computer-readable media
US20150121250A1 (en) PROVIDING INTELLIGENT MANAGEMENT FOR WEB REAL-TIME COMMUNICATIONS (WebRTC) INTERACTIVE FLOWS, AND RELATED METHODS, SYSTEMS, AND COMPUTER-READABLE MEDIA
US20120233334A1 (en) Shared media access for real time first and third party control
US11228623B2 (en) Method for transmitting media streams between RTC clients
US20210037064A1 (en) In-Line AI Virtual Assistant
US10805376B2 (en) Communication server and method for selective use of real-time communication features
US10263952B2 (en) Providing origin insight for web applications via session traversal utilities for network address translation (STUN) messages, and related methods, systems, and computer-readable media
US20150271273A1 (en) System for Using a Device as a Side Car
EP2894826B1 (en) Video call set up in an established audio call
Islam et al. Converged access of IMS and web services: A virtual client model
Damayanti Research of web real-time communication-The unified communication platform using node. js signaling server
US9979722B2 (en) Method and apparatus for processing a RTCWEB authentication
WO2023087925A1 (en) Telecommunication method, electronic device, and storage medium

Legal Events

Date Code Title Description
AS Assignment

Owner name: AVAYA INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EZELL, JOEL;YOAKUM, JOHN H.;REEL/FRAME:032700/0261

Effective date: 20140414

AS Assignment

Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS INC.;OCTEL COMMUNICATIONS CORPORATION;AND OTHERS;REEL/FRAME:041576/0001

Effective date: 20170124

AS Assignment

Owner name: OCTEL COMMUNICATIONS LLC (FORMERLY KNOWN AS OCTEL COMMUNICATIONS CORPORATION), CALIFORNIA

Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531

Effective date: 20171128

Owner name: AVAYA INTEGRATED CABINET SOLUTIONS INC., CALIFORNIA

Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531

Effective date: 20171128

Owner name: VPNET TECHNOLOGIES, INC., CALIFORNIA

Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531

Effective date: 20171128

Owner name: OCTEL COMMUNICATIONS LLC (FORMERLY KNOWN AS OCTEL

Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531

Effective date: 20171128

Owner name: AVAYA INC., CALIFORNIA

Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531

Effective date: 20171128

Owner name: AVAYA INTEGRATED CABINET SOLUTIONS INC., CALIFORNI

Free format text: BANKRUPTCY COURT ORDER RELEASING ALL LIENS INCLUDING THE SECURITY INTEREST RECORDED AT REEL/FRAME 041576/0001;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:044893/0531

Effective date: 20171128

AS Assignment

Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS LLC;OCTEL COMMUNICATIONS LLC;AND OTHERS;REEL/FRAME:045034/0001

Effective date: 20171215

Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW Y

Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS LLC;OCTEL COMMUNICATIONS LLC;AND OTHERS;REEL/FRAME:045034/0001

Effective date: 20171215

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA INTEGRATED CABINET SOLUTIONS LLC;OCTEL COMMUNICATIONS LLC;AND OTHERS;REEL/FRAME:045124/0026

Effective date: 20171215

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, MINNESOTA

Free format text: SECURITY INTEREST;ASSIGNORS:AVAYA INC.;AVAYA MANAGEMENT L.P.;INTELLISIST, INC.;AND OTHERS;REEL/FRAME:053955/0436

Effective date: 20200925

AS Assignment

Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT, DELAWARE

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AVAYA INC.;INTELLISIST, INC.;AVAYA MANAGEMENT L.P.;AND OTHERS;REEL/FRAME:061087/0386

Effective date: 20220712

AS Assignment

Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001

Effective date: 20230403

Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001

Effective date: 20230403

Owner name: AVAYA INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001

Effective date: 20230403

Owner name: AVAYA HOLDINGS CORP., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 45124/FRAME 0026;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:063457/0001

Effective date: 20230403

AS Assignment

Owner name: WILMINGTON SAVINGS FUND SOCIETY, FSB (COLLATERAL AGENT), DELAWARE

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AVAYA MANAGEMENT L.P.;AVAYA INC.;INTELLISIST, INC.;AND OTHERS;REEL/FRAME:063742/0001

Effective date: 20230501

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:AVAYA INC.;AVAYA MANAGEMENT L.P.;INTELLISIST, INC.;REEL/FRAME:063542/0662

Effective date: 20230501

AS Assignment

Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: CAAS TECHNOLOGIES, LLC, NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: HYPERQUALITY II, LLC, NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: HYPERQUALITY, INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: ZANG, INC. (FORMER NAME OF AVAYA CLOUD INC.), NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: VPNET TECHNOLOGIES, INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: OCTEL COMMUNICATIONS LLC, NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: INTELLISIST, INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: AVAYA INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 045034/0001);ASSIGNOR:GOLDMAN SACHS BANK USA., AS COLLATERAL AGENT;REEL/FRAME:063779/0622

Effective date: 20230501

Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 53955/0436);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063705/0023

Effective date: 20230501

Owner name: INTELLISIST, INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 53955/0436);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063705/0023

Effective date: 20230501

Owner name: AVAYA INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 53955/0436);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063705/0023

Effective date: 20230501

Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 53955/0436);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063705/0023

Effective date: 20230501

Owner name: AVAYA INTEGRATED CABINET SOLUTIONS LLC, NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 61087/0386);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063690/0359

Effective date: 20230501

Owner name: INTELLISIST, INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 61087/0386);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063690/0359

Effective date: 20230501

Owner name: AVAYA INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 61087/0386);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063690/0359

Effective date: 20230501

Owner name: AVAYA MANAGEMENT L.P., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (REEL/FRAME 61087/0386);ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION, AS NOTES COLLATERAL AGENT;REEL/FRAME:063690/0359

Effective date: 20230501

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: AVAYA LLC, DELAWARE

Free format text: (SECURITY INTEREST) GRANTOR'S NAME CHANGE;ASSIGNOR:AVAYA INC.;REEL/FRAME:065019/0231

Effective date: 20230501