US10936477B2 - End-to-end user interface component testing - Google Patents
End-to-end user interface component testing Download PDFInfo
- Publication number
- US10936477B2 US10936477B2 US15/885,240 US201815885240A US10936477B2 US 10936477 B2 US10936477 B2 US 10936477B2 US 201815885240 A US201815885240 A US 201815885240A US 10936477 B2 US10936477 B2 US 10936477B2
- Authority
- US
- United States
- Prior art keywords
- user interface
- interface component
- url
- test
- test script
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Prevention of errors by analysis, debugging or testing of software
- G06F11/3668—Testing of software
- G06F11/3672—Test management
- G06F11/3688—Test management for test execution, e.g. scheduling of test suites
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/955—Retrieval from the web using information identifiers, e.g. uniform resource locators [URL]
- G06F16/9566—URL specific, e.g. using aliases, detecting broken or misspelled links
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/958—Organisation or management of web site content, e.g. publishing, maintaining pages or automatic linking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
- G06F2201/815—Virtual
Definitions
- This patent document generally relates to end-to-end user interface component testing in a database system. More specifically, this patent document discloses techniques for efficient automation of end-to-end user interface component testing.
- Cloud computing services provide shared resources, applications, and information to computers and other devices upon request.
- services can be provided by one or more servers accessible over the Internet rather than installing software locally on in-house computer systems.
- users can interact with cloud computing services to undertake a wide range of tasks.
- FIG. 1 shows flowcharts of examples of computer-implemented methods 100 a , 100 b and 100 c for some implementations of automated end-to-end testing of user interface components.
- FIG. 2 shows a flowchart of an example of setting up inputs for some implementations of automated end-to-end testing of user interface components.
- FIG. 3 shows a flowchart of an example of some operations in some implementations of automated end-to-end testing of user interface components.
- FIG. 4 shows an example of a presentation displayed in the form of a graphical user interface (GUI) for some implementations of automated end-to-end testing of user interface components.
- GUI graphical user interface
- FIG. 5 shows another example of a presentation displayed in the form of a GUI for some implementations of automated end-to-end testing of user interface components.
- FIG. 6A shows a block diagram of an example of an environment 10 in which an on-demand database service can be used in accordance with some implementations.
- FIG. 6B shows a block diagram of an example of some implementations of elements of FIG. 6A and various possible interconnections between these elements.
- FIG. 7A shows a system diagram of an example of architectural components of an on-demand database service environment 900 , in accordance with some implementations.
- FIG. 7B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment, in accordance with some implementations.
- Some implementations of the disclosed systems, apparatus, methods and computer program products are configured for end-to-end testing of a UI platform.
- UI user interface
- One non-limiting example of such a user interface (UI) platform is the Chatter platform, provided by salesforce.com, inc.
- a cloud computing service such as Chatter is used in different salesforce.com, inc. applications, such as Lightning, communities, etc., and also outside of salesforce.com applications. Each corresponds to a different container for Chatter.
- Some automated testing for an end-to-end customer scenario that models usage of Chatter involves loading the container and validating numerous conditions, such as the successful loading of a webpage.
- Some of the conditions specifying validation are associated with the container (e.g., operations of user authentication), but are not directly associated with a Chatter UI component that is the focus of testing.
- conditions directly associated with the Chatter UI component being tested form only a portion of the “long chain” of conditions in an end-to-end test.
- Certain conditions while not directly associated with the Chatter UI component being tested, can correspond to dependencies that the Chatter component may exhibit with respect to the container that the Chatter component is running within.
- a Chatter component may have a navigational dependency, such as a sequence of navigation operations (e.g., login, click on Chatter tab, then click on Admin options, then click on text entry box, etc.) to be performed by a web browser automation interface, such as Selenium WebDriver, to reach the Chatter component in the particular container.
- a navigational dependency such as a sequence of navigation operations (e.g., login, click on Chatter tab, then click on Admin options, then click on text entry box, etc.) to be performed by a web browser automation interface, such as Selenium WebDriver, to reach the Chatter component in the particular container.
- Each may involve validation during automated testing, but does not specifically relate to testing functionality of the Chatter component itself. Automated testing throughput can be improved by reducing dependencies between the Chatter component subject to testing and the particular
- the test method can load a standalone application and load a Uniform Resource Locator (URL) containing the Chatter component to test.
- URL Uniform Resource Locator
- FIG. 1 shows flowcharts of examples of computer-implemented methods 100 a , 100 b and 100 c for some implementations of automated end-to-end testing of user interface components.
- FIG. 1 is described with reference to FIGS. 2-5 .
- FIGS. 2-5 show examples of flowcharts and presentations displayed in the form of graphical user interfaces (GUIs) for automated end-to-end testing of UI components in accordance with some implementations.
- GUIs graphical user interfaces
- an end-to-end test script can be initiated for a particular component in a particular application, such as the depicted selfservice.app, which corresponds to the communities container.
- the selfservice.app file can be downloaded to a server executing the test script.
- WebDriver 148 can be instantiated to provide an interface for programmatically controlling a particular web browser for simulating user behavior.
- context 150 can be derived from the selfservice.app container.
- context 150 corresponds to the properties of, for example, a page object representing the landing page for selfservice.app.
- properties include a form factor (e.g., tablet, phone, desktop), screen orientation (e.g., landscape, portrait), screen size (e.g., 960 ⁇ 640, 1280 ⁇ 1024), framework mode (e.g., salesforce Aura), application mode (e.g., Lightning desktop, Lightning community, Salesforce1 mobile, Salesforce1 community), browser user agent, browser information (e.g., browser type), accessibility settings (e.g., enabled or disabled), swizzling settings (e.g., enabled or disabled), timeout values, network ID, and so forth.
- form factor e.g., tablet, phone, desktop
- screen orientation e.g., landscape, portrait
- screen size e.g., 960 ⁇ 640, 1280 ⁇ 1024
- framework mode e.g., salesforce Aura
- application mode e.g.
- BaseURL 152 can be initialized.
- BaseURL corresponds to a base server URL for the server hosting cloud services for selfservice.app.
- BaseURL can correspond to org62.my.force.com/sserv.
- the network ID as described above for context 150 can be used for URL generation.
- each salesforce.com, inc.-hosted network may have its own unique “force.com” base URL.
- an application server URL such as org62.my.force.com/sserv/selfservice.app can be used as the base URL. It should be appreciated that in various implementations, there may be a need to reset the application server URL when the network ID is changed.
- base level tests can be performed to validate various conditions associated with initial use of the selfservice.app.
- authentication/sign-on processes can be validated.
- test method 100 a can programmatically control the web browser to navigate to a page in the selfservice.app application with the component that is the focus of the test.
- the page with the component to test is modeled with a target page object that is initialized in 154 .
- the target page object provides, in an example implementation using Java, public methods that can be used to interact with the component to test. For example, a public method for adding a comment to a feed can be provided by the target page object.
- the test script uses the target page object initialized in 154 to perform a test on a component.
- a comment can be added to a feed.
- the functionality of the component to test can have dependencies on resources provided by the application 118 , which in the case of test method 100 a , corresponds to selfservice.app.
- selfservice.app may have a particular layout for navigation in the application, such as a horizontal group of tabs.
- a navigational dependency such as a sequence of logging in, clicking on a “feed” tab in a particular position, and then clicking on the text entry box that is in a particular position.
- Each operation in the navigational sequence may be specific to selfservice.app.
- the one.app container corresponding to test method 100 b may, for illustrative purposes, use a vertical navigation menu rather than a horizontal group of tabs, and reaching the text entry box may specify clicking on both an “All feeds” menu option and then a “My feeds” sub-menu option.
- Each of these navigational dependencies specify validation (e.g., check page loaded properly, etc.), though the navigation operations themselves do not relate to the actual functionality of posting a new comment.
- selfservice.app may be an event driven framework that supports hierarchical components.
- the functionality of the component to test can have dependencies on parent component 120 , which can correspond to components that encapsulate the component being tested.
- the component being tested can be a hierarchical subcomponent, such as, for example, a text input field
- parent component 120 continuing the example, can be a post publisher for a group feed that includes the text input field.
- Parent component 120 may implement event handlers that respond to interface events related to the component being tested.
- parent component 120 may handle the event of a user interaction (e.g., mouse click) on the “Share” icon associated with a text input field, which is necessary to process the addition of a comment to a feed.
- the test result can be validated.
- the target page object can be invoked to count the number of feed comments after test method 100 a has called the public method to create a new comment. If the count value has not been incremented, test method 100 a can detect a validation issue.
- the results of the test corresponding to interaction with the component being tested, can be returned by test method 100 a for further processing, such as terminating a test suite if component validation is indicated as failing.
- test method 100 a similarly applies to test method 100 b of FIG. 1 .
- an end-to-end test script can be initiated for a particular component in the depicted one.app, which corresponds to the Salesforce1/Lightning container.
- the one.app file can be downloaded to a server executing the test script.
- BaseURL 132 can correspond to org62.lightning.force.com/one/instead.
- test method 100 b can programmatically control the web browser to navigate to a page in the one.app application with the component that is the focus of the test.
- each test method for each container leads to returning the same target page object that is used to interact with the component to test in 116 .
- the component to test such as a Chatter UI component for posting a comment to a group feed
- the component to test can be provided to a user through different containers (i.e., selfservice.app, one.app, etc.).
- a particular component may have different dependencies with respect to the container being used.
- the end-to-end implementation of test method 100 a and test method 100 b each of which can correspond to a customer use scenario for the same UI component, will differ.
- the scenario based automated testing of UI components is affected by the characteristics of the container, which results in complexity and dependencies on the WebDriver page objects, both before and after the Chatter UI is invoked.
- the dependencies are specified for the end-to-end customer scenario test to pass. The complexity and dependencies make test development expensive, and can produce large numbers of test failures that make debugging burdensome.
- scenario based automated testing of a UI component can occur outside of containers such as selfservice.app or one.app, and instead occurs in a standalone application (standalone container).
- the standalone application can eliminate the dependencies the Chatter UI component may have on a particular container, and allows automated testing to focus exclusively on the Chatter UI component functionality, which cuts down development cost.
- the standalone application can utilize the WebDriver page objects and salesforce Aura framework, and provide a layer between the Aura JavaScript tests and WebDriver integration tests.
- This allows testing of a UI component outside of the original application container, which may be beneficial when the test specifications exceed what the Aura JavaScript test framework provides.
- a test may correspond to mocking complex test data types from the back-end, which is beyond the Aura framework's test capability, but can be easily done via Java testing utilities.
- a test may specify user interactions that cannot be simulated via the Aura test framework.
- a UI component, or component, as referred to herein corresponds to a portion of a user interface.
- a UI component can be a modular and potentially reusable section of a UI of an application.
- a UI component, or component may not necessarily correspond to a unit, which as referred to herein corresponds to a minimum or other small-scale testable part of an application.
- a unit may be a function, procedure, a class or a complex algorithm. It should be appreciated that by using, for example, the WebDriver automation platform, the presently disclosed testing techniques for user interface components can simulate user interactions, and can thus be characterized as end-to-end testing. It should be further appreciated that such end-to-end testing of user interface components is in contrast to unit testing by, for example, JavaScript technology such as Jasmine, xUnit, etc., which do not mimic end user interaction.
- Non-limiting examples of implementations of efficient automated end-to-end testing techniques for user interface components are described as follows.
- a test method 100 c corresponding to a test script can be initiated for a particular component in the depicted standalone.app.
- the standalone.app file can be downloaded to a server executing the test script.
- the standalone application is configured to receive a customized context.
- the standalone application can include a method that receives a customized URL, or network address/ID, corresponding to the page or portion of the page having the component providing, for example, a particular user interface feature to test.
- WebDriver 108 can be instantiated for controlling a web browser.
- context 110 corresponds to properties of page objects.
- operation of the WebDriver results in particular property values for the context.
- the context that may have resulted from WebDriver commands for WebDriver 108 can be overwritten with a customized context 110 .
- the customized context for standalone.app can be replicated from a context derived from WebDriver operation in a different application container, such as one.app or selfservice.app.
- the overwritten context can set BaseURL 112 , which may have corresponded to an application container such as one.app or selfservice.app, with a BaseURL corresponding to the standalone application.
- test method 100 a can programmatically control the web browser to load to a page in the standalone.app application with the UI component that is the focus of the test, such as the UI component for adding a new comment to a feed.
- BaseURL 112 can be further supplemented with a UI component parameter URL string such that the combined URL corresponds to the UI component to test, such as a post publisher for authoring comments.
- the page to load as derived from BaseURL 112 such as, for example, the combined URL, may be different than the first page, such as, for example, a landing page that is provided in containers such as one.app or selfservice.app.
- the first page may be a login page specifying authentication before any Chatter UI components can be invoked in a later page. Therefore, in the standalone.app, as a nonlimiting example, navigation through the landing page is not necessary to reach the UI component that is the focus of the test. This minimizes the occurrence of “flappers,” or unreliable test results that are associated with low confidence due to potential dependencies on the container.
- the UI component being tested is accessible through a URL corresponding to the UI component.
- FIG. 4 depicts a post publisher 400 that is navigated to by logging in to a salesforce.com, inc. domain at URL 420 and selecting the Admin tab.
- the standalone application provides an environment where the URL 520 for the publisher 500 can be directly loaded to avoid navigating through the salesforce.com, inc. domain and clicking the Admin tab.
- the UI component to test is modeled with a target page object that is initialized in 114 . Similar to test methods 100 a - b , in 116 , the test script uses the target page object initialized in 114 to perform a test on the UI component. Furthermore, the results of the test can be validated similar to as described above. It should be appreciated that in test method 100 c , a second UI component can be tested without reloading the application container, such as, for example, by reusing a customized context for context 110 . In some implementations, the second UI component can include the first UI component. It should further be appreciated that the above examples are merely illustrative, and the below description provides additional details on features that can be included in certain implementations.
- a web application referred to herein as an application, is a container for the objects, tabs, resources, and other functionality that is being provided to a user of the application.
- a user interface component can encapsulate a modular and potentially reusable section of a user interface (UI) of the application.
- UI user interface
- a user interface component such as a user interface for publishing posts to a feed, undergoes testing to determine compliance with quality control measures.
- the characteristics of the testing methodology for validating a UI component can be affected by the application that the UI component is contained within, also referred to herein as an “application container” or “container.”
- a different container can be used to provide a unique and engaging experience for each target user group for the functionality associated with a particular component.
- a cloud computing service provider may provide an organization with tools for engaging with entities within the organization, along with tools to engage with constituencies external to the organization, including but not limited to consumers, customers, prospects, resellers, partners, integrators, dealers, and other constituencies.
- Each constituency has a unique set of needs.
- an illustrative customer portal can be used as a vertically-oriented process portal established for a specific purpose (e.g., customer self-service), and involve engagement tools such as maintenance of data and process (logging cases, registering leads, etc.) as well as searching for relevant information to resolve issues.
- the portal can be further augmented with collaboration tools from salesforce.com, inc. like Chatter, Ideas, and Q&A.
- a different portal design can be generated to provide a unique experience for each target constituency.
- Each portal may be created in a different application framework, such as the salesforce.com, inc. Classic tab paradigm, a custom interface built programmatically using Visualforce, a custom interface built declaratively using Site.com, a mobile friendly interface using Salesforce1 (or the Lightning framework built on the Salesforce1 platform), or using the self service Communities framework.
- Each of these options represents a container.
- a container corresponds to a top-level architectural choice for how to deliver pages in a cloud computing service.
- Choice of a container determines not only how pages are built, how native page functionality is treated, and the extent of the customizability and strategy for a mobile deployment.
- the choice of a container has implications in categories such as page construction, branding approaches, navigation paradigm, mobile strategies, and choices for declarative build tools and programmatic build tools.
- the salesforce.com Classic tab container allows reuse of standard layouts, but at the expense of flexibility, such as an imposed horizontal navigation structure, and lack of support for responsive design principles.
- Site.com offers layout flexibility and templating, but the declarative web content management system can lack the power and flexibility of code-level control of a page.
- the Visualforce container provides flexibility and control, but this flexibility can come at the expense of organizational agility, as most UI changes may have to go through a team of developers, as opposed to administrators or business users.
- the salesforce Lightning Container allows uploading of a component developed with a third-party framework as a static resource, and hosting the content using Lightning:container.
- Lightning:container allows components created in third-party frameworks like AngularJS or React to run within Lightning pages.
- the Lightning:container hosts content in an iframe, and can implement communication to and from the framed application.
- use of Lightning:container has limitations. For example, a user may observe performance and scrolling issues, and lack of integration with browser navigation history. As another example, if a user of a web browser navigates away from the page and a Lightning:container is being used, the component does not automatically remember its state. As a further example, the content within the iframe does not use the same offline and caching schemes as the rest of the components in Lightning.
- Lightning Out container Yet another example of the effect of the container is the Lightning Out container.
- a developer can deploy a Lightning component anywhere Lightning Out is supported, which includes non-salesforce.com, inc. environments.
- non-salesforce.com inc. environments.
- an component in a Lightning Out container run outside of any salesforce.com container, such components may result in different behavior relative to standard Lightning components that are running within the salesforce.com Lightning container.
- Lightning Out runs outside of a salesforce.com Lightning container, those cookies are considered as “third-party” cookies.
- users need to allow third-party cookies in their browser settings, which involve the issue of authentication.
- the component in Lightning Out may have to address authentication issues if applicable.
- Lightning Out Another issue when using Lightning Out involves event handling.
- Certain cloud computing services are based on a framework that uses event-driven programming. This can involve implementing event handlers that respond to interface events as they occur. The events may or may not have been triggered by user interaction (e.g., mouse click). For example, actions supported by a component are accomplished by firing various Lightning events.
- the “listener” is the Lightning container or Salesforce1 container, one.app.
- the Lightning container or Salesforce1 container, one.app.
- certain components may not behave correctly when used outside of a salesforce.com container (i.e., running in a standalone environment), such as within Lightning Out. This is because the components implicitly depend on resources available in, as a non-limiting example, the one.app container.
- Lightning dependency application is created to describe the component dependencies of a component to be deployed using Lightning Out.
- Lightning Out loads the definitions for the components in the application.
- Lightning Out can require specification of the component dependencies in advance, so that the definitions can be loaded once, at startup time.
- the Lightning dependency application can be an ⁇ aura:application> with certain attributes, and the dependent components described using the ⁇ aura:dependency> tag.
- the ⁇ aura:dependency> tag enables declaration of dependencies, which improves their discoverability by the framework.
- the Lightning Out framework automatically tracks dependencies between definitions, such as components, defined in markup. This enables the framework to send the definitions to the browser.
- ⁇ aura:dependency> can be used in the component's markup to explicitly tell the framework about the dependency.
- Adding the ⁇ aura:dependency> tag ensures that a definition, such as a component, and its dependencies are sent to the client, when needed. It should be appreciated that a Lightning dependency application is not deployed as an application for customers to use directly. Instead, a Lightning dependency application is used to specify the dependencies for component contained within the Lightning Out framework.
- salesforce.com's Chatter includes a collection of UI components that can be used in a variety of containers. Chatter provides a rich suite of features, including user profiles, feed updates, comments, groups, and feeds. These features add a collaborative and social dimension to applications. Numerous UI functionalities have already been developed as components available for reuse. Examples of Chatter user interface components include the @ mention functionality in publisher 400 of FIG. 4 . For example, in a Post 402 to a group 414 with a message body input 404 of “I just added @des,” when typing after the @ sign, a user is prompted in list 406 to select from people being followed, as well as other people in the same organization. As non-limiting examples, additional UI components in publisher 400 include file attachment action 408 and URL link action 410 .
- Selenium WebDriver is an automated testing environment.
- a tester or developer through his/her test script, can command WebDriver to perform certain actions on the application under test (AUT) on a certain browser.
- the way the user can command WebDriver to perform web browser actions is by using the client libraries or language bindings provided by WebDriver. These libraries are provided in different languages, such as Java, Ruby, Python, Perl, PHP, and .NET.
- WebDriver By using the language-binding client libraries, developers can invoke the browser-specific implementations of WebDriver, such as Firefox Driver, Internet Explorer Driver, Opera Driver, and so on, to interact with the AUT on the respective browser. These browser-specific implementations of WebDriver can work with the browser natively and execute commands to simulate the application user. After execution, WebDriver can send out the test result back to the test script for analysis.
- Page Objects are a software design pattern that can be implemented as a best practice for writing Selenium WebDriver tests.
- the functionality of classes, or Page Objects, in the design pattern represent a logical relationship between the pages of the application.
- the Page Object pattern can represent the screens of an application as a series of objects that encapsulate the features represented by a page, thereby allowing modeling of UI components in tests.
- the public methods of a Page Object represent the services that the page offers.
- the page factory class provides a way of initializing and mapping the Page Object fields. By default, it will map Page Object properties to fields with matching ids or names.
- Some of the advantages of the Page Object pattern include reducing the duplication of code, making tests more readable and robust, and improving the maintainability of tests, particularly when there are frequent changes in the AUT.
- the “Admin” page 412 for a Chatter group 414 can correspond to an Admin Page Object that provides six services under Chatter Admin Actions 416 , such as:
- a Selenium test script obtains an instance of the Admin Page Object via the login service of, such as, for example, an AdminLoginPage Page Object, it can use any of the six services of the Admin Page Object to perform tests. If any of the implementation details change, such as the navigation to a particular comment 418 or the identifier (ID) of a Webpage Element or default locator on the Admin page, the Selenium test script itself does not need to be modified. Instead, modifying the Admin Page Object can accommodate the corresponding changes.
- the following is a sequence of operations executed in a Selenium test script to test adding a new comment to the Chatter feed:
- test script creates a FirefoxDriver instance, because the test scenario involves adding a new comment to the feed on the Firefox browser.
- test script creates an instance of the AdminLoginPage Page Object that uses the same FirefoxDriver instance created in the previous operation.
- test script gets the instance of the AdminLoginPage Page Object, it uses the login service to log in to the Chatter admin console.
- the login service in return, gives out an instance of the Admin Page Object instance to the test script.
- the test script uses the instance of the Admin Page Object obtained in the previous operation to use one of the many services provided by the Admin page.
- the test script can use a createANewComment service provided by the Admin Page Object.
- test script can proceed to create a new comment on the feed, such as by stimulating the behavior of a user typing into a message input field and clicking “Share.”
- the test script can validate whether the comment was added to the feed by determining if the total number of comments has increased by 1.
- FIG. 2 shows a flowchart 200 of an example of setting up inputs for some implementations of automated end-to-end testing of user interface components.
- the setup process includes obtaining a base application server URL.
- This base application server URL can correspond to the server hosting a standalone application.
- the standalone application can be configured during execution of an automated test to receive a page object context as an input. In doing so, the standalone application fits the page object hierarchy for the target test suite, and existing page objects can be reused without the application container such as one.app or selfservice.app.
- the customized page object context includes the base application server URL obtained during test system setup.
- the standalone application corresponds to an interface that extends an existing application or component implementation.
- the standalone application implements locator names corresponding to variants of spinners.
- the base application server URL can be obtained by getting a URL map and obtaining the application server path.
- the setup process includes constructing a test URL for the UI component including the user interface features to test.
- constructing a test URL corresponds to getting a current URL for a current WebDriver.
- constructing a test URL corresponds to populating a test URL based on combining a set of URL parameters that define a configuration of a UI component.
- the construction of the test URL provides a mechanism to, for example, inject the parameters of the UI component to test without relying on navigation through an application container.
- a UI component test URL which injects parameters specifying, for example, the feed type being “NEWS,” the absence of Navigation Topics, the available Quick Action items, and so forth is provided as follows:
- the application server base URL is not filled (as represented by the “%sforceChatter” portion) until the base URL information is populated by initializing the current WebDriver.
- a parameter such as “appLayOut” can be used to specify a form factor associated with the component (e.g., phone, tablet, desktop).
- form factor information can be indicated by use of specific UI components that are different between mobile and desktop environment. For example, in the above example URL, the field “textPostDesktop.cmp” identifies a desktop environment.
- FIG. 3 shows a flowchart of an example of some operations in some implementations of automated end-to-end testing of user interface components.
- the testing process includes obtaining a configuration of a programmatic interface for controlling a web browser.
- the programmatic interface can correspond to a Selenium WebDriver instance.
- the testing process includes obtaining a customized page object context.
- This operation can include generating a page object context, or annotating a page object context, with a page object hierarchy supporting the target test suite.
- the page object context can be derived from WebDriver operation in the original application container containing the UI components to test.
- an indication to annotate the test with proper application context values can be provided if the page context is not initialized.
- the method for generating a page object context overrides an existing method for configuration of a page object context.
- the testing process includes configuring the standalone application container based in part on the configuration of the programmatic interface and customized page object context.
- the testing process includes obtaining a test URL of components to test.
- generation of the test URL is as previously discussed for 230 of FIG. 2 .
- the testing process includes programmatically controlling the web browser to use the base application server URL indicated by the customized page object context and the first test URL to load the first UI component to test, obtaining the first page object representing the first UI component to test, and programmatically controlling the web browser to perform the first test on the first UI component.
- the web browser can issue one or more content requests corresponding to the first UI component.
- the test methodology utilizes the base URL and component URL to directly access the UI component.
- FIG. 4 depicts a post publisher 400 that is navigated to by logging in to a salesforce.com domain at URL 420 and selecting the Admin tab.
- the standalone application provides an environment where the URL 520 for the publisher 500 can be used to avoid navigating through the salesforce.com domain and clicking the Admin tab.
- the UI component URL can correspond to the input area of publisher 500 , which can contain the interaction that triggers the @ mention feature, rather than the UI component URL corresponding to loading of the @mention feature itself.
- loading the UI component rather than navigating to the UI component can reduce the dependencies that the UI component being tested has on the original application container, thereby reducing testing complexity.
- the scope of the first page object is limited to the UI component being tested. For example, if the page object code has container locators, the code can be updated to not have container locators.
- performing the test on the UI component involves disabling associated accessibility testing.
- the testing process includes validating the results of the first test.
- the testing process includes programmatically controlling the web browser to obtain a second page object representing a second UI component to test, and programmatically controlling the web browser to perform the second test on the second UI component.
- the testing process includes validating the results of the second test.
- the testing of the second UI component can occur without reloading of the standalone application as performed in 330 .
- the second UI component contains the first UI component.
- the second test on the second UI component includes a determination of the functionality of the first UI component.
- the first UI component may correspond to the page object having an @mention action to test, such as for the message body input field, and the first test may correspond to a selection of a name provided as an option under the @mention feature.
- the second UI component may correspond to a second page object representing a post publisher containing the message body input field (i.e., the second page object includes the first page object), and the second test may correspond to posting the contents of the message body input field after a particular name provided by the @mention feature was selected.
- the disclosed techniques provide flexibility in the components to test.
- the above example involving testing the @mention feature is merely illustrative. Examples of other tests that can also be performed include, but are not limited to, scenarios involving topic assignment, topic auto-suggestion, rich text publisher features, and so forth.
- the page objects used by the standalone application can also be used to perform traditional WebDriver tests, namely navigation through an application for an end-to-end test.
- the same sets of page objects can be used for both UI component level WebDriver tests or end-to-end WebDriver tests.
- Certain tests may not be available for UI component level WebDriver testing.
- Nonlimiting examples involving testing of UI components that may not have a corresponding URL, and therefore would not support UI component level Web Driver tests includes UI components involving integration, such as information relating to users provided by a separate domain, or a file attachment for a particular file from a separate domain.
- Systems, apparatus, and methods are described below for implementing database systems and enterprise level social and business information networking systems in conjunction with the disclosed techniques.
- Such implementations can provide more efficient use of a database system. For instance, a user of a database system may not easily know when important information in the database has changed, e.g., about a project or client.
- Such implementations can provide feed tracked updates about such changes and other events, thereby keeping users informed.
- a user can update a record in the form of a CRM object, e.g., an opportunity such as a possible sale of 1000 computers.
- a feed tracked update about the record update can then automatically be provided, e.g., in a feed, to anyone subscribing to the opportunity or to the user.
- the user does not need to contact a manager regarding the change in the opportunity, since the feed tracked update about the update is sent via a feed to the manager's feed page or other page.
- FIG. 6A shows a block diagram of an example of an environment 10 in which an on-demand database service exists and can be used in accordance with some implementations.
- Environment 10 may include user systems 12 , network 14 , database system 16 , processor system 17 , application platform 18 , network interface 20 , tenant data storage 22 , system data storage 24 , program code 26 , and process space 28 .
- environment 10 may not have all of these components and/or may have other components instead of, or in addition to, those listed above.
- a user system 12 may be implemented as any computing device(s) or other data processing apparatus such as a machine or system used by a user to access a database system 16 .
- any of user systems 12 can be a handheld and/or portable computing device such as a mobile phone, a smartphone, a laptop computer, or a tablet.
- Other examples of a user system include computing devices such as a work station and/or a network of computing devices.
- user systems 12 might interact via a network 14 with an on-demand database service, which is implemented in the example of FIG. 6A as database system 16 .
- An on-demand database service is a service that is made available to users who do not need to necessarily be concerned with building and/or maintaining the database system. Instead, the database system may be available for their use when the users need the database system, i.e., on the demand of the users.
- Some on-demand database services may store information from one or more tenants into tables of a common database image to form a multi-tenant database system (MTS).
- a database image may include one or more database objects.
- RDBMS relational database management system
- Application platform 18 may be a framework that allows the applications of system 16 to run, such as the hardware and/or software, e.g., the operating system.
- application platform 18 enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 12 , or third party application developers accessing the on-demand database service via user systems 12 .
- the users of user systems 12 may differ in their respective capacities, and the capacity of a particular user system 12 might be entirely determined by permissions (permission levels) for the current user. For example, when a salesperson is using a particular user system 12 to interact with system 16 , the user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 16 , that user system has the capacities allotted to that administrator.
- users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level, also called authorization.
- Network 14 is any network or combination of networks of devices that communicate with one another.
- network 14 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration.
- Network 14 can include a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the Internet.
- TCP/IP Transfer Control Protocol and Internet Protocol
- the Internet will be used in many of the examples herein. However, it should be understood that the networks that the present implementations might use are not so limited.
- User systems 12 might communicate with system 16 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc.
- HTTP HyperText Transfer Protocol
- user system 12 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP signals to and from an HTTP server at system 16 .
- HTTP server might be implemented as the sole network interface 20 between system 16 and network 14 , but other techniques might be used as well or instead.
- the network interface 20 between system 16 and network 14 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least for users accessing system 16 , each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
- system 16 implements a web-based CRM system.
- system 16 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, web pages and other information to and from user systems 12 and to store to, and retrieve from, a database system related data, objects, and Webpage content.
- data for multiple tenants may be stored in the same physical database object in tenant data storage 22 , however, tenant data typically is arranged in the storage medium(s) of tenant data storage 22 so that data of one tenant is kept logically separate from that of other tenants so that one tenant does not have access to another tenant's data, unless such data is expressly shared.
- system 16 implements applications other than, or in addition to, a CRM application.
- system 16 may provide tenant access to multiple hosted (standard and custom) applications, including a CRM application.
- User (or third party developer) applications which may or may not include CRM, may be supported by the application platform 18 , which manages creation, storage of the applications into one or more database objects and executing of the applications in a virtual machine in the process space of the system 16 .
- FIGS. 7A and 7B One arrangement for elements of system 16 is shown in FIGS. 7A and 7B , including a network interface 20 , application platform 18 , tenant data storage 22 for tenant data 23 , system data storage 24 for system data 25 accessible to system 16 and possibly multiple tenants, program code 26 for implementing various functions of system 16 , and a process space 28 for executing MTS system processes and tenant-specific processes, such as running applications as part of an application hosting service. Additional processes that may execute on system 16 include database indexing processes.
- each user system 12 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing device capable of interfacing directly or indirectly to the Internet or other network connection.
- WAP wireless access protocol
- the term “computing device” is also referred to herein simply as a “computer”.
- User system 12 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 12 to access, process and view information, pages and applications available to it from system 16 over network 14 .
- HTTP client e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like.
- Each user system 12 also typically includes one or more user input devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a GUI provided by the browser on a display (e.g., a monitor screen, LCD display, OLED display, etc.) of the computing device in conjunction with pages, forms, applications and other information provided by system 16 or other systems or servers.
- a display e.g., a monitor screen, LCD display, OLED display, etc.
- display device can refer to a display of a computer system such as a monitor or touch-screen display, and can refer to any computing device having display capabilities such as a desktop computer, laptop, tablet, smartphone, a television set-top box, or wearable device such Google Glass® or other human body-mounted display apparatus.
- the display device can be used to access data and applications hosted by system 16 , and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user.
- implementations are suitable for use with the Internet, although other networks can be used instead of or in addition to the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
- VPN virtual private network
- non-TCP/IP based network any LAN or WAN or the like.
- each user system 12 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like.
- system 16 and additional instances of an MTS, where more than one is present
- processor system 17 which may be implemented to include a central processing unit, which may include an Intel Pentium® processor or the like, and/or multiple processor units.
- Non-transitory computer-readable media can have instructions stored thereon/in, that can be executed by or used to program a computing device to perform any of the methods of the implementations described herein.
- Computer program code 26 implementing instructions for operating and configuring system 16 to intercommunicate and to process web pages, applications and other data and media content as described herein is preferably downloadable and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any other type of computer-readable medium or device suitable for storing instructions and/or data.
- any other volatile or non-volatile memory medium or device such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive,
- the entire program code, or portions thereof may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known.
- a transmission medium e.g., over the Internet
- any other conventional network connection e.g., extranet, VPN, LAN, etc.
- any communication medium and protocols e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.
- computer code for the disclosed implementations can be realized in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, JavaTM, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used.
- JavaTM is a trademark of Sun Microsystems, Inc.
- each system 16 is configured to provide web pages, forms, applications, data and media content to user (client) systems 12 to support the access by user systems 12 as tenants of system 16 .
- system 16 provides security mechanisms to keep each tenant's data separate unless the data is shared.
- MTS Mobility Management Entity
- they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B).
- each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations.
- server is meant to refer to one type of computing device such as a system including processing hardware and process space(s), an associated storage medium such as a memory device or database, and, in some instances, a database application (e.g., OODBMS or RDBMS) as is well known in the art.
- database application e.g., OODBMS or RDBMS
- server system and “server” are often used interchangeably herein.
- database objects described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
- FIG. 6B shows a block diagram of an example of some implementations of elements of FIG. 6A and various possible interconnections between these elements. That is, FIG. 6B also illustrates environment 10 . However, in FIG. 6B elements of system 16 and various interconnections in some implementations are further illustrated.
- user system 12 may include processor system 12 A, memory system 12 B, input system 12 C, and output system 12 D.
- FIG. 6B shows network 14 and system 16 .
- system 16 may include tenant data storage 22 , tenant data 23 , system data storage 24 , system data 25 , User Interface (UI) 30 , Application Program Interface (API) 32 , PL/SOQL 34 , save routines 36 , application setup mechanism 38 , application servers 50 1 - 50 N , system process space 52 , tenant process spaces 54 , tenant management process space 60 , tenant storage space 62 , user storage 64 , and application metadata 66 .
- environment 10 may not have the same elements as those listed above and/or may have other elements instead of, or in addition to, those listed above.
- processor system 12 A may be any combination of one or more processors.
- Memory system 12 B may be any combination of one or more memory devices, short term, and/or long term memory.
- Input system 12 C may be any combination of input devices, such as one or more keyboards, mice, trackballs, scanners, cameras, and/or interfaces to networks.
- Output system 12 D may be any combination of output devices, such as one or more monitors, printers, and/or interfaces to networks.
- system 16 may include a network interface 20 (of FIG.
- Each application server 50 may be configured to communicate with tenant data storage 22 and the tenant data 23 therein, and system data storage 24 and the system data 25 therein to serve requests of user systems 12 .
- the tenant data 23 might be divided into individual tenant storage spaces 62 , which can be either a physical arrangement and/or a logical arrangement of data.
- user storage 64 and application metadata 66 might be similarly allocated for each user. For example, a copy of a user's most recently used (MRU) items might be stored to user storage 64 .
- MRU most recently used
- a UI 30 provides a user interface and an API 32 provides an application programmer interface to system 16 resident processes to users and/or developers at user systems 12 .
- the tenant data and the system data may be stored in various databases, such as one or more Oracle® databases.
- Application platform 18 includes an application setup mechanism 38 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 22 by save routines 36 for execution by subscribers as one or more tenant process spaces 54 managed by tenant management process 60 for example. Invocations to such applications may be coded using PL/SOQL 34 that provides a programming language style interface extension to API 32 .
- PL/SOQL 34 provides a programming language style interface extension to API 32 .
- a detailed description of some PL/SOQL language implementations is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, issued on Jun. 1, 2010, and hereby incorporated by reference in its entirety and for all purposes.
- Invocations to applications may be detected by one or more system processes, which manage retrieving application metadata 66 for the subscriber making the invocation and
- Each application server 50 may be communicably coupled to database systems, e.g., having access to system data 25 and tenant data 23 , via a different network connection.
- one application server 50 1 might be coupled via the network 14 (e.g., the Internet)
- another application server 50 N-1 might be coupled via a direct network link
- another application server 50 N might be coupled by yet a different network connection.
- Transfer Control Protocol and Internet Protocol TCP/IP are typical protocols for communicating between application servers 50 and the database system.
- TCP/IP Transfer Control Protocol and Internet Protocol
- each application server 50 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 50 .
- an interface system implementing a load balancing function e.g., an F5 Big-IP load balancer
- the load balancer uses a least connections algorithm to route user requests to the application servers 50 .
- Other examples of load balancing algorithms such as round robin and observed response time, also can be used.
- system 16 is multi-tenant, wherein system 16 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
- one tenant might be a company that employs a sales force where each salesperson uses system 16 to manage their sales process.
- a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 22 ).
- tenant data storage 22 e.g., in tenant data storage 22 .
- the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
- user systems 12 (which may be client systems) communicate with application servers 50 to request and update system-level and tenant-level data from system 16 that may involve sending one or more queries to tenant data storage 22 and/or system data storage 24 .
- System 16 e.g., an application server 50 in system 16
- System data storage 24 may generate query plans to access the requested data from the database.
- Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories.
- a “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein.
- Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields.
- a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc.
- Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc.
- standard entity tables might be provided for use by all tenants.
- such standard entities might include tables for case, account, contact, lead, and opportunity data objects, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
- tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields.
- custom objects Commonly assigned U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman et al., issued on Aug. 17, 2010, and hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system.
- all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
- FIG. 7A shows a system diagram of an example of architectural components of an on-demand database service environment 900 , in accordance with some implementations.
- a client machine located in the cloud 904 may communicate with the on-demand database service environment via one or more edge routers 908 and 912 .
- a client machine can be any of the examples of user systems 12 described above.
- the edge routers may communicate with one or more core switches 920 and 924 via firewall 916 .
- the core switches may communicate with a load balancer 928 , which may distribute server load over different pods, such as the pods 940 and 944 .
- the pods 940 and 944 may each include one or more servers and/or other computing resources, may perform data processing and other operations used to provide on-demand services. Communication with the pods may be conducted via pod switches 932 and 936 . Components of the on-demand database service environment may communicate with a database storage 956 via a database firewall 948 and a database switch 952 .
- accessing an on-demand database service environment may involve communications transmitted among a variety of different hardware and/or software components.
- the on-demand database service environment 900 is a simplified representation of an actual on-demand database service environment. For example, while only one or two devices of each type are shown in FIGS. 7A and 7B , some implementations of an on-demand database service environment may include anywhere from one to many devices of each type. Also, the on-demand database service environment need not include each device shown in FIGS. 7A and 7B , or may include additional devices not shown in FIGS. 7A and 7B .
- one or more of the devices in the on-demand database service environment 900 may be implemented on the same physical device or on different hardware. Some devices may be implemented using hardware or a combination of hardware and software. Thus, terms such as “data processing apparatus,” “machine,” “server” and “device” as used herein are not limited to a single hardware device, but rather include any hardware and software configured to provide the described functionality.
- the cloud 904 is intended to refer to a data network or combination of data networks, often including the Internet.
- Client machines located in the cloud 904 may communicate with the on-demand database service environment to access services provided by the on-demand database service environment. For example, client machines may access the on-demand database service environment to retrieve, store, edit, and/or process information.
- the edge routers 908 and 912 route packets between the cloud 904 and other components of the on-demand database service environment 900 .
- the edge routers 908 and 912 may employ the Border Gateway Protocol (BGP).
- BGP is the core routing protocol of the Internet.
- the edge routers 908 and 912 may maintain a table of IP networks or ‘prefixes’, which designate network reachability among autonomous systems on the Internet.
- the firewall 916 may protect the inner components of the on-demand database service environment 900 from Internet traffic.
- the firewall 916 may block, permit, or deny access to the inner components of the on-demand database service environment 900 based upon a set of rules and other criteria.
- the firewall 916 may act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.
- the core switches 920 and 924 are high-capacity switches that transfer packets within the on-demand database service environment 900 .
- the core switches 920 and 924 may be configured as network bridges that quickly route data between different components within the on-demand database service environment.
- the use of two or more core switches 920 and 924 may provide redundancy and/or reduced latency.
- the pods 940 and 944 may perform the core data processing and service functions provided by the on-demand database service environment.
- Each pod may include various types of hardware and/or software computing resources.
- An example of the pod architecture is discussed in greater detail with reference to FIG. 7B .
- communication between the pods 940 and 944 may be conducted via the pod switches 932 and 936 .
- the pod switches 932 and 936 may facilitate communication between the pods 940 and 944 and client machines located in the cloud 904 , for example via core switches 920 and 924 .
- the pod switches 932 and 936 may facilitate communication between the pods 940 and 944 and the database storage 956 .
- the load balancer 928 may distribute workload between the pods 940 and 944 . Balancing the on-demand service requests between the pods may assist in improving the use of resources, increasing throughput, reducing response times, and/or reducing overhead.
- the load balancer 928 may include multilayer switches to analyze and forward traffic.
- access to the database storage 956 may be guarded by a database firewall 948 .
- the database firewall 948 may act as a computer application firewall operating at the database application layer of a protocol stack.
- the database firewall 948 may protect the database storage 956 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure.
- SQL structure query language
- the database firewall 948 may include a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router.
- the database firewall 948 may inspect the contents of database traffic and block certain content or database requests.
- the database firewall 948 may work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.
- communication with the database storage 956 may be conducted via the database switch 952 .
- the multi-tenant database storage 956 may include more than one hardware and/or software components for handling database queries. Accordingly, the database switch 952 may direct database queries transmitted by other components of the on-demand database service environment (e.g., the pods 940 and 944 ) to the correct components within the database storage 956 .
- the database storage 956 is an on-demand database system shared by many different organizations.
- the on-demand database service may employ a multi-tenant approach, a virtualized approach, or any other type of database approach.
- On-demand database services are discussed in greater detail with reference to FIGS. 7A and 7B .
- FIG. 7B shows a system diagram further illustrating an example of architectural components of an on-demand database service environment, in accordance with some implementations.
- the pod 944 may be used to render services to a user of the on-demand database service environment 900 .
- each pod may include a variety of servers and/or other systems.
- the pod 944 includes one or more content batch servers 964 , content search servers 968 , query servers 982 , file servers 986 , access control system (ACS) servers 980 , batch servers 984 , and application servers 988 .
- the pod 944 includes database instances 990 , quick file systems (QFS) 992 , and indexers 994 .
- some or all communication between the servers in the pod 944 may be transmitted via the switch 936 .
- the application servers 988 may include a hardware and/or software framework dedicated to the execution of procedures (e.g., programs, routines, scripts) for supporting the construction of applications provided by the on-demand database service environment 900 via the pod 944 .
- the hardware and/or software framework of an application server 988 is configured to cause performance of services described herein, including performance of one or more of the operations of methods described herein with reference to FIGS. 1-5 .
- two or more application servers 988 may be included to cause such methods to be performed, or one or more other servers described herein can be configured to cause part or all of the disclosed methods to be performed.
- the content batch servers 964 may handle requests internal to the pod. These requests may be long-running and/or not tied to a particular customer. For example, the content batch servers 964 may handle requests related to log mining, cleanup work, and maintenance tasks.
- the content search servers 968 may provide query and indexer functions.
- the functions provided by the content search servers 968 may allow users to search through content stored in the on-demand database service environment.
- the file servers 986 may manage requests for information stored in the file storage 998 .
- the file storage 998 may store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using the file servers 986 , the image footprint on the database may be reduced.
- BLOBs basic large objects
- the query servers 982 may be used to retrieve information from one or more file systems.
- the query system 982 may receive requests for information from the application servers 988 and then transmit information queries to the NFS 996 located outside the pod.
- the pod 944 may share a database instance 990 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by the pod 944 may call upon various hardware and/or software resources. In some implementations, the ACS servers 980 may control access to data, hardware resources, or software resources.
- the batch servers 984 may process batch jobs, which are used to run tasks at specified times. Thus, the batch servers 984 may transmit instructions to other servers, such as the application servers 988 , to trigger the batch jobs.
- the QFS 992 may be an open source file system available from Sun Microsystems® of Santa Clara, Calif.
- the QFS may serve as a rapid-access file system for storing and accessing information available within the pod 944 .
- the QFS 992 may support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which may be useful for streaming applications where long disk seeks cannot be tolerated.
- the QFS system may communicate with one or more content search servers 968 and/or indexers 994 to identify, retrieve, move, and/or update data stored in the network file systems 996 and/or other storage systems.
- one or more query servers 982 may communicate with the NFS 996 to retrieve and/or update information stored outside of the pod 944 .
- the NFS 996 may allow servers located in the pod 944 to access information to access files over a network in a manner similar to how local storage is accessed.
- queries from the query servers 922 may be transmitted to the NFS 996 via the load balancer 928 , which may distribute resource requests over various resources available in the on-demand database service environment.
- the NFS 996 may also communicate with the QFS 992 to update the information stored on the NFS 996 and/or to provide information to the QFS 992 for use by servers located within the pod 944 .
- the pod may include one or more database instances 990 .
- the database instance 990 may transmit information to the QFS 992 . When information is transmitted to the QFS, it may be available for use by servers within the pod 944 without using an additional database call.
- database information may be transmitted to the indexer 994 .
- Indexer 994 may provide an index of information available in the database 990 and/or QFS 992 .
- the index information may be provided to file servers 986 and/or the QFS 992 .
- any of the disclosed implementations may be embodied in various types of hardware, software, firmware, and combinations thereof.
- some techniques disclosed herein may be implemented, at least in part, by computer-readable media that include program instructions, state information, etc., for performing various services and operations described herein.
- Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by a computing device such as a server or other data processing apparatus using an interpreter.
- Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as flash memory, compact disk (CD) or digital versatile disk (DVD); magneto-optical media; and hardware devices specially configured to store program instructions, such as read-only memory (“ROM”) devices and random access memory (“RAM”) devices.
- ROM read-only memory
- RAM random access memory
- Any of the operations and techniques described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, object-oriented techniques.
- the software code may be stored as a series of instructions or commands on a computer-readable medium.
- Computer-readable media encoded with the software/program code may be packaged with a compatible device or provided separately from other devices (e.g., via Internet download). Any such computer-readable medium may reside on or within a single computing device or an entire computer system, and may be among other computer-readable media within a system or network.
- a computer system or computing device may include a monitor, printer, or other suitable display for providing any of the results mentioned herein to a user.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
- Debugging And Monitoring (AREA)
Abstract
Description
-
- Create a Comment
- Edit a Comment
- Delete a Comment
- Filter comments by Category
- Search for text in comments
- Count the number of comments available
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/885,240 US10936477B2 (en) | 2018-01-31 | 2018-01-31 | End-to-end user interface component testing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/885,240 US10936477B2 (en) | 2018-01-31 | 2018-01-31 | End-to-end user interface component testing |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190235998A1 US20190235998A1 (en) | 2019-08-01 |
US10936477B2 true US10936477B2 (en) | 2021-03-02 |
Family
ID=67391387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/885,240 Active 2038-02-21 US10936477B2 (en) | 2018-01-31 | 2018-01-31 | End-to-end user interface component testing |
Country Status (1)
Country | Link |
---|---|
US (1) | US10936477B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11490432B1 (en) | 2021-05-28 | 2022-11-01 | T-Mobile Usa, Inc. | Unified query tool for network function virtualization architecture |
US11509704B1 (en) * | 2021-05-28 | 2022-11-22 | T-Mobile Usa. Inc. | Product validation based on simulated enhanced calling or messaging communications services in telecommunications network |
US11546243B1 (en) | 2021-05-28 | 2023-01-03 | T-Mobile Usa, Inc. | Unified interface and tracing tool for network function virtualization architecture |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10997250B2 (en) | 2018-09-24 | 2021-05-04 | Salesforce.Com, Inc. | Routing of cases using unstructured input and natural language processing |
US11928169B2 (en) * | 2019-08-14 | 2024-03-12 | Jpmorgan Chase Bank, N.A. | System and method for implementing a functional documentation module |
US11262979B2 (en) | 2019-09-18 | 2022-03-01 | Bank Of America Corporation | Machine learning webpage accessibility testing tool |
US11444970B2 (en) * | 2019-09-24 | 2022-09-13 | Target Brands, Inc. | Dynamic security test system |
CN111258904A (en) * | 2020-01-16 | 2020-06-09 | 恩亿科(北京)数据科技有限公司 | Webpage element testing method and related device |
CN111597112B (en) * | 2020-04-30 | 2023-08-08 | 北京金山云网络技术有限公司 | Automatic test method and device and electronic equipment |
CN113392030B (en) * | 2021-07-30 | 2023-10-24 | 北京达佳互联信息技术有限公司 | Method and device for testing Js bridge and related equipment |
CN114185786A (en) * | 2021-12-10 | 2022-03-15 | 中国电信股份有限公司 | Test method, apparatus, computer equipment and storage medium for end-to-end system |
US11960560B1 (en) * | 2023-02-17 | 2024-04-16 | Usablenet Inc. | Methods for analyzing recurring accessibility issues with dynamic web site behavior and devices thereof |
Citations (161)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5577188A (en) | 1994-05-31 | 1996-11-19 | Future Labs, Inc. | Method to provide for virtual screen overlay |
US5608872A (en) | 1993-03-19 | 1997-03-04 | Ncr Corporation | System for allowing all remote computers to perform annotation on an image and replicating the annotated image on the respective displays of other comuters |
US5649104A (en) | 1993-03-19 | 1997-07-15 | Ncr Corporation | System for allowing user of any computer to draw image over that generated by the host computer and replicating the drawn image to other computers |
US5715450A (en) | 1995-09-27 | 1998-02-03 | Siebel Systems, Inc. | Method of selecting and presenting data from a database using a query language to a user of a computer system |
US5821937A (en) | 1996-02-23 | 1998-10-13 | Netsuite Development, L.P. | Computer method for updating a network design |
US5831610A (en) | 1996-02-23 | 1998-11-03 | Netsuite Development L.P. | Designing networks |
US5873096A (en) | 1997-10-08 | 1999-02-16 | Siebel Systems, Inc. | Method of maintaining a network of partially replicated database system |
US5918159A (en) | 1997-08-04 | 1999-06-29 | Fomukong; Mundi | Location reporting satellite paging system with optional blocking of location reporting |
US5963953A (en) | 1998-03-30 | 1999-10-05 | Siebel Systems, Inc. | Method, and system for product configuration |
US5983227A (en) | 1997-06-12 | 1999-11-09 | Yahoo, Inc. | Dynamic page generator |
US6092083A (en) | 1997-02-26 | 2000-07-18 | Siebel Systems, Inc. | Database management system which synchronizes an enterprise server and a workgroup user client using a docking agent |
US6161149A (en) | 1998-03-13 | 2000-12-12 | Groupserve, Inc. | Centrifugal communication and collaboration method |
US6169534B1 (en) | 1997-06-26 | 2001-01-02 | Upshot.Com | Graphical user interface for customer information management |
US6178425B1 (en) | 1997-02-26 | 2001-01-23 | Siebel Systems, Inc. | Method of determining the visibility to a remote database client of a plurality of database transactions using simplified visibility rules |
US6216135B1 (en) | 1997-02-26 | 2001-04-10 | Siebel Systems, Inc. | Method of determining visibility to a remote database client of a plurality of database transactions having variable visibility strengths |
US6216133B1 (en) | 1995-06-09 | 2001-04-10 | U.S. Phi,Ips Corporation | Method for enabling a user to fetch a specific information item from a set of information items, and a system for carrying out such a method |
US6233617B1 (en) | 1997-02-26 | 2001-05-15 | Siebel Systems, Inc. | Determining the visibility to a remote database client |
US6236978B1 (en) | 1997-11-14 | 2001-05-22 | New York University | System and method for dynamic profiling of users in one-to-one applications |
US6266669B1 (en) | 1997-02-28 | 2001-07-24 | Siebel Systems, Inc. | Partially replicated distributed database with multiple levels of remote clients |
US6288717B1 (en) | 1999-03-19 | 2001-09-11 | Terry Dunkle | Headline posting algorithm |
US6295530B1 (en) | 1995-05-15 | 2001-09-25 | Andrew M. Ritchie | Internet service of differently formatted viewable data signals including commands for browser execution |
US20010044791A1 (en) | 2000-04-14 | 2001-11-22 | Richter James Neal | Automated adaptive classification system for bayesian knowledge networks |
US6324568B1 (en) | 1999-11-30 | 2001-11-27 | Siebel Systems, Inc. | Method and system for distributing objects over a network |
US6324693B1 (en) | 1997-03-12 | 2001-11-27 | Siebel Systems, Inc. | Method of synchronizing independently distributed software and database schema |
US6336137B1 (en) | 2000-03-31 | 2002-01-01 | Siebel Systems, Inc. | Web client-server system and method for incompatible page markup and presentation languages |
USD454139S1 (en) | 2001-02-20 | 2002-03-05 | Rightnow Technologies | Display screen for a computer |
US6367077B1 (en) | 1997-02-27 | 2002-04-02 | Siebel Systems, Inc. | Method of upgrading a software application in the presence of user modifications |
US6393605B1 (en) | 1998-11-18 | 2002-05-21 | Siebel Systems, Inc. | Apparatus and system for efficient delivery and deployment of an application |
US20020072951A1 (en) | 1999-03-03 | 2002-06-13 | Michael Lee | Marketing support database management method, system and program product |
US6411949B1 (en) | 1999-08-12 | 2002-06-25 | Koninklijke Philips Electronics N.V., | Customizing database information for presentation with media selections |
US20020082892A1 (en) | 1998-08-27 | 2002-06-27 | Keith Raffel | Method and apparatus for network-based sales force management |
US6434550B1 (en) | 2000-04-14 | 2002-08-13 | Rightnow Technologies, Inc. | Temporal updates of relevancy rating of retrieved information in an information search system |
US6446089B1 (en) | 1997-02-26 | 2002-09-03 | Siebel Systems, Inc. | Method of using a cache to determine the visibility to a remote database client of a plurality of database transactions |
US20020143997A1 (en) | 2001-03-28 | 2002-10-03 | Xiaofei Huang | Method and system for direct server synchronization with a computing device |
US20020140731A1 (en) | 2001-03-28 | 2002-10-03 | Pavitra Subramaniam | Engine to present a user interface based on a logical structure, such as one for a customer relationship management system, across a web site |
US20020162090A1 (en) | 2001-04-30 | 2002-10-31 | Parnell Karen P. | Polylingual simultaneous shipping of software |
US20020165742A1 (en) | 2000-03-31 | 2002-11-07 | Mark Robins | Feature centric release manager method and system |
US20030004971A1 (en) | 2001-06-29 | 2003-01-02 | Gong Wen G. | Automatic generation of data models and accompanying user interfaces |
US20030018705A1 (en) | 2001-03-31 | 2003-01-23 | Mingte Chen | Media-independent communication server |
US20030018830A1 (en) | 2001-02-06 | 2003-01-23 | Mingte Chen | Adaptive communication application programming interface |
US6535909B1 (en) | 1999-11-18 | 2003-03-18 | Contigo Software, Inc. | System and method for record and playback of collaborative Web browsing session |
US20030066032A1 (en) | 2001-09-28 | 2003-04-03 | Siebel Systems,Inc. | System and method for facilitating user interaction in a browser environment |
US20030066031A1 (en) | 2001-09-28 | 2003-04-03 | Siebel Systems, Inc. | Method and system for supporting user navigation in a browser environment |
US20030070000A1 (en) | 2001-09-29 | 2003-04-10 | John Coker | Computing system and method to implicitly commit unsaved data for a World Wide Web application |
US20030070004A1 (en) | 2001-09-29 | 2003-04-10 | Anil Mukundan | Method, apparatus, and system for implementing a framework to support a web-based application |
US20030069936A1 (en) | 2001-10-09 | 2003-04-10 | Warner Douglas K. | Method for routing electronic correspondence based on the level and type of emotion contained therein |
US20030070005A1 (en) | 2001-09-29 | 2003-04-10 | Anil Mukundan | Method, apparatus, and system for implementing view caching in a framework to support web-based applications |
US20030074418A1 (en) | 2001-09-29 | 2003-04-17 | John Coker | Method, apparatus and system for a mobile web client |
US6553563B2 (en) | 1998-11-30 | 2003-04-22 | Siebel Systems, Inc. | Development tool, method, and system for client server applications |
US6560461B1 (en) | 1997-08-04 | 2003-05-06 | Mundi Fomukong | Authorized location reporting paging system |
US6574635B2 (en) | 1999-03-03 | 2003-06-03 | Siebel Systems, Inc. | Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components |
US6577726B1 (en) | 2000-03-31 | 2003-06-10 | Siebel Systems, Inc. | Computer telephony integration hotelling method and system |
US6601087B1 (en) | 1998-11-18 | 2003-07-29 | Webex Communications, Inc. | Instant document sharing |
US6604117B2 (en) | 1996-03-19 | 2003-08-05 | Siebel Systems, Inc. | Method of maintaining a network of partially replicated database system |
US20030151633A1 (en) | 2002-02-13 | 2003-08-14 | David George | Method and system for enabling connectivity to a data system |
US20030159136A1 (en) | 2001-09-28 | 2003-08-21 | Huang Xiao Fei | Method and system for server synchronization with a computing device |
US6621834B1 (en) | 1999-11-05 | 2003-09-16 | Raindance Communications, Inc. | System and method for voice transmission over network protocols |
US20030189600A1 (en) | 2002-03-29 | 2003-10-09 | Prasad Gune | Defining an approval process for requests for approval |
US20030204427A1 (en) | 2002-03-29 | 2003-10-30 | Prasad Gune | User interface for processing requests for approval |
US20030206192A1 (en) | 2001-03-31 | 2003-11-06 | Mingte Chen | Asynchronous message push to web browser |
US6654032B1 (en) | 1999-12-23 | 2003-11-25 | Webex Communications, Inc. | Instant sharing of documents on a remote server |
US20030225730A1 (en) | 2002-06-03 | 2003-12-04 | Rightnow Technologies, Inc. | System and method for generating a dynamic interface via a communications network |
US6665648B2 (en) | 1998-11-30 | 2003-12-16 | Siebel Systems, Inc. | State models for monitoring process |
US6665655B1 (en) | 2000-04-14 | 2003-12-16 | Rightnow Technologies, Inc. | Implicit rating of retrieved information in an information search system |
US20040001092A1 (en) | 2002-06-27 | 2004-01-01 | Rothwein Thomas M. | Prototyping graphical user interfaces |
US20040010489A1 (en) | 2002-07-12 | 2004-01-15 | Rightnow Technologies, Inc. | Method for providing search-specific web pages in a network computing environment |
US20040015981A1 (en) | 2002-06-27 | 2004-01-22 | Coker John L. | Efficient high-interactivity user interface for client-server applications |
US20040027388A1 (en) | 2002-06-27 | 2004-02-12 | Eric Berg | Method and apparatus to facilitate development of a customer-specific business process model |
US6711565B1 (en) | 2001-06-18 | 2004-03-23 | Siebel Systems, Inc. | Method, apparatus, and system for previewing search results |
US6724399B1 (en) | 2001-09-28 | 2004-04-20 | Siebel Systems, Inc. | Methods and apparatus for enabling keyboard accelerators in applications implemented via a browser |
US6728702B1 (en) | 2001-06-18 | 2004-04-27 | Siebel Systems, Inc. | System and method to implement an integrated search center supporting a full-text search and query on a database |
US6728960B1 (en) | 1998-11-18 | 2004-04-27 | Siebel Systems, Inc. | Techniques for managing multiple threads in a browser environment |
US6732111B2 (en) | 1998-03-03 | 2004-05-04 | Siebel Systems, Inc. | Method, apparatus, system, and program product for attaching files and other objects to a partially replicated database |
US6732100B1 (en) | 2000-03-31 | 2004-05-04 | Siebel Systems, Inc. | Database access method and system for user role defined access |
US6732095B1 (en) | 2001-04-13 | 2004-05-04 | Siebel Systems, Inc. | Method and apparatus for mapping between XML and relational representations |
US20040128001A1 (en) | 2002-08-28 | 2004-07-01 | Levin Issac Stephen | Method and apparatus for an integrated process modeller |
US6763351B1 (en) | 2001-06-18 | 2004-07-13 | Siebel Systems, Inc. | Method, apparatus, and system for attaching search results |
US6763501B1 (en) | 2000-06-09 | 2004-07-13 | Webex Communications, Inc. | Remote document serving |
US6768904B2 (en) | 2000-10-11 | 2004-07-27 | Lg Electronics Inc. | Data communication method using mobile terminal |
US6772229B1 (en) | 2000-11-13 | 2004-08-03 | Groupserve, Inc. | Centrifugal communication and collaboration method |
US6782383B2 (en) | 2001-06-18 | 2004-08-24 | Siebel Systems, Inc. | System and method to implement a persistent and dismissible search center frame |
US20040186860A1 (en) | 2003-03-21 | 2004-09-23 | Wen-Hsin Lee | Method and architecture for providing data-change alerts to external applications via a push service |
US20040193510A1 (en) | 2003-03-25 | 2004-09-30 | Catahan Nardo B. | Modeling of order data |
US20040199489A1 (en) | 2003-03-24 | 2004-10-07 | Barnes-Leon Maria Theresa | Custom common object |
US20040199543A1 (en) | 2003-04-04 | 2004-10-07 | Braud Luke A. | Facilitating data manipulation in a browser-based user interface of an enterprise business application |
US20040199536A1 (en) | 2003-03-24 | 2004-10-07 | Barnes Leon Maria Theresa | Product common object |
US6804330B1 (en) | 2002-01-04 | 2004-10-12 | Siebel Systems, Inc. | Method and system for accessing CRM data via voice |
US6826745B2 (en) | 1998-11-30 | 2004-11-30 | Siebel Systems, Inc. | System and method for smart scripting call centers and configuration thereof |
US6826582B1 (en) | 2001-09-28 | 2004-11-30 | Emc Corporation | Method and system for using file systems for content management |
US6829655B1 (en) | 2001-03-28 | 2004-12-07 | Siebel Systems, Inc. | Method and system for server synchronization with a computing device via a companion device |
US20040249854A1 (en) | 2003-03-24 | 2004-12-09 | Barnes-Leon Maria Theresa | Common common object |
US20040260659A1 (en) | 2003-06-23 | 2004-12-23 | Len Chan | Function space reservation system |
US20040260534A1 (en) | 2003-06-19 | 2004-12-23 | Pak Wai H. | Intelligent data search |
US20040268299A1 (en) | 2003-06-30 | 2004-12-30 | Shu Lei | Application user interface template with free-form layout |
US20040268312A1 (en) * | 2003-05-30 | 2004-12-30 | International Business Machines Corporation | Application development support, component invocation monitoring, and data processing |
US6842748B1 (en) | 2000-04-14 | 2005-01-11 | Rightnow Technologies, Inc. | Usage based strength between related information in an information retrieval system |
US6850895B2 (en) | 1998-11-30 | 2005-02-01 | Siebel Systems, Inc. | Assignment manager |
US20050050555A1 (en) | 2003-08-28 | 2005-03-03 | Exley Richard Mark | Universal application network architecture |
US6907566B1 (en) | 1999-04-02 | 2005-06-14 | Overture Services, Inc. | Method and system for optimum placement of advertisements on a webpage |
US7062502B1 (en) | 2001-12-28 | 2006-06-13 | Kesler John N | Automated generation of dynamic data entry user interface for relational database management systems |
US7069497B1 (en) | 2002-09-10 | 2006-06-27 | Oracle International Corp. | System and method for applying a partial page change |
US7069231B1 (en) | 2000-07-20 | 2006-06-27 | Oracle International Corporation | Methods and systems for defining, applying and executing customer care relationship plans |
US7181758B1 (en) | 1994-07-25 | 2007-02-20 | Data Innovation, L.L.C. | Information distribution and processing system |
US7269590B2 (en) | 2004-01-29 | 2007-09-11 | Yahoo! Inc. | Method and system for customizing views of information associated with a social network user |
US7289976B2 (en) | 2004-12-23 | 2007-10-30 | Microsoft Corporation | Easy-to-use data report specification |
US7340411B2 (en) | 1998-02-26 | 2008-03-04 | Cook Rachael L | System and method for generating, capturing, and managing customer lead information over a computer network |
US7356482B2 (en) | 1998-12-18 | 2008-04-08 | Alternative Systems, Inc. | Integrated change management unit |
US7406501B2 (en) | 2003-03-24 | 2008-07-29 | Yahoo! Inc. | System and method for instant messaging using an e-mail protocol |
US7412455B2 (en) | 2003-04-30 | 2008-08-12 | Dillon David M | Software framework that facilitates design and implementation of database applications |
US7454509B2 (en) | 1999-11-10 | 2008-11-18 | Yahoo! Inc. | Online playback system with community bias |
US20090063415A1 (en) | 2007-08-31 | 2009-03-05 | Business Objects, S.A. | Apparatus and method for dynamically selecting componentized executable instructions at run time |
US7508789B2 (en) | 1994-04-07 | 2009-03-24 | Data Innovation Llc | Information distribution and processing system |
US20090100342A1 (en) | 2007-10-12 | 2009-04-16 | Gabriel Jakobson | Method and system for presenting address and mapping information |
US20090177744A1 (en) | 2008-01-04 | 2009-07-09 | Yahoo! Inc. | Identifying and employing social network relationships |
US7603483B2 (en) | 2001-03-23 | 2009-10-13 | Cisco Technology, Inc. | Method and system for class-based management of dynamic content in a networked environment |
US7620655B2 (en) | 2003-05-07 | 2009-11-17 | Enecto Ab | Method, device and computer program product for identifying visitors of websites |
US7644122B2 (en) | 1999-11-23 | 2010-01-05 | Frank Michael Weyer | Method apparatus and business system for online communications with online and offline recipients |
US7668861B2 (en) | 2000-02-14 | 2010-02-23 | Yahoo! Inc. | System and method to determine the validity of an interaction on a network |
US7698160B2 (en) | 1999-05-07 | 2010-04-13 | Virtualagility, Inc | System for performing collaborative tasks |
US7730478B2 (en) | 2006-10-04 | 2010-06-01 | Salesforce.Com, Inc. | Method and system for allowing access to developed applications via a multi-tenant on-demand database service |
US7747648B1 (en) | 2005-02-14 | 2010-06-29 | Yahoo! Inc. | World modeling using a relationship network with communication channels to entities |
US7779475B2 (en) | 2006-07-31 | 2010-08-17 | Petnote Llc | Software-based method for gaining privacy by affecting the screen of a computing device |
US7779039B2 (en) | 2004-04-02 | 2010-08-17 | Salesforce.Com, Inc. | Custom entities and fields in a multi-tenant database system |
US7827208B2 (en) | 2006-08-11 | 2010-11-02 | Facebook, Inc. | Generating a feed of stories personalized for members of a social network |
US7853881B1 (en) | 2006-07-03 | 2010-12-14 | ISQ Online | Multi-user on-line real-time virtual social networks based upon communities of interest for entertainment, information or e-commerce purposes |
US7945653B2 (en) | 2006-10-11 | 2011-05-17 | Facebook, Inc. | Tagging digital media |
US8005896B2 (en) | 1998-10-13 | 2011-08-23 | Cheah Ip Llc | System for controlled distribution of user profiles over a network |
US8014943B2 (en) | 2008-05-08 | 2011-09-06 | Gabriel Jakobson | Method and system for displaying social networking navigation information |
US20110218958A1 (en) | 2010-03-08 | 2011-09-08 | Salesforce.Com, Inc. | System, method and computer program product for performing one or more actions utilizing a uniform resource locator |
US8032297B2 (en) | 2008-05-08 | 2011-10-04 | Gabriel Jakobson | Method and system for displaying navigation information on an electronic map |
US20110247051A1 (en) | 2010-04-01 | 2011-10-06 | Salesforce.Com, Inc. | System, method and computer program product for performing one or more actions based on a determined access permissions for a plurality of users |
US8073850B1 (en) | 2007-01-19 | 2011-12-06 | Wordnetworks, Inc. | Selecting key phrases for serving contextually relevant content |
US8082301B2 (en) | 2006-11-10 | 2011-12-20 | Virtual Agility, Inc. | System for supporting collaborative activity |
US8095413B1 (en) | 1999-05-07 | 2012-01-10 | VirtualAgility, Inc. | Processing management information |
US8095531B2 (en) | 2006-10-03 | 2012-01-10 | Salesforce.Com, Inc. | Methods and systems for controlling access to custom objects in a database |
US20120042218A1 (en) | 2010-08-13 | 2012-02-16 | Salesforce.Com, Inc. | Debugging site errors by an admin as a guest user in a multi-tenant database environment |
US8209308B2 (en) | 2006-05-01 | 2012-06-26 | Rueben Steven L | Method for presentation of revisions of an electronic document |
US20120198351A1 (en) * | 2011-01-31 | 2012-08-02 | Oracle International Corporation | Automatically Testing a Web Application That Has Independent Display Trees |
US20120233137A1 (en) | 2006-05-01 | 2012-09-13 | Gabriel Jakobson | Presentation of document history in a web browsing application |
US20130086560A1 (en) * | 2011-09-30 | 2013-04-04 | International Business Machines Corporation | Processing automation scripts of software |
US8490025B2 (en) | 2008-02-01 | 2013-07-16 | Gabriel Jakobson | Displaying content associated with electronic mapping systems |
US8504945B2 (en) | 2008-02-01 | 2013-08-06 | Gabriel Jakobson | Method and system for associating content with map zoom function |
US8510664B2 (en) | 2008-09-06 | 2013-08-13 | Steven L. Rueben | Method and system for displaying email thread information |
US8510045B2 (en) | 2009-12-22 | 2013-08-13 | Steven L. Rueben | Digital maps displaying search-resulting points-of-interest in user delimited regions |
US20130212497A1 (en) | 2012-02-10 | 2013-08-15 | Liveperson, Inc. | Analytics driven engagement |
US20130218948A1 (en) | 2012-02-17 | 2013-08-22 | Gabriel Jakobson | Variable speed collaborative web browsing system |
US20130218966A1 (en) | 2012-02-17 | 2013-08-22 | Gabriel Jakobson | Collaborative web browsing system having document object model element interaction detection |
US20130218949A1 (en) | 2012-02-17 | 2013-08-22 | Gabriel Jakobson | Collaborative web browsing system integrated with social networks |
US20130247216A1 (en) | 2008-11-03 | 2013-09-19 | Salesforce.Com, Inc | System, method and computer program product for publicly providing web content of a tenant using a multi-tenant on-demand database service |
US8566301B2 (en) | 2006-05-01 | 2013-10-22 | Steven L. Rueben | Document revisions in a collaborative computing environment |
US8646103B2 (en) | 2008-06-30 | 2014-02-04 | Gabriel Jakobson | Method and system for securing online identities |
US20140359537A1 (en) | 2008-02-01 | 2014-12-04 | Gabriel Jackobson | Online advertising associated with electronic mapping systems |
US20150007050A1 (en) | 2013-07-01 | 2015-01-01 | Gabriel Jakobson | Method and system for processing and displaying email thread information |
US20150006289A1 (en) | 2013-07-01 | 2015-01-01 | Gabriel Jakobson | Advertising content in regions within digital maps |
US20150095162A1 (en) | 2013-09-27 | 2015-04-02 | Gabriel Jakobson | Method and systems for online advertising to users using fictitious user idetities |
US20150142596A1 (en) | 2013-11-18 | 2015-05-21 | Gabriel Jakobson | Commercial transactions via a wearable computer with a display |
US20150172563A1 (en) | 2013-12-18 | 2015-06-18 | Gabriel Jakobson | Incorporating advertising content into a digital video |
US20160212073A1 (en) * | 2009-12-22 | 2016-07-21 | Cyara Solutions Pty Ltd | System and method for automated end-to-end web interaction testing |
US20170004064A1 (en) * | 2015-06-30 | 2017-01-05 | Sap Se | Actions test automation |
US9720811B2 (en) * | 2011-06-29 | 2017-08-01 | Red Hat, Inc. | Unified model for visual component testing |
US20180137035A1 (en) * | 2016-11-15 | 2018-05-17 | Accenture Global Solutions Limited | Simultaneous multi-platform testing |
-
2018
- 2018-01-31 US US15/885,240 patent/US10936477B2/en active Active
Patent Citations (192)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5608872A (en) | 1993-03-19 | 1997-03-04 | Ncr Corporation | System for allowing all remote computers to perform annotation on an image and replicating the annotated image on the respective displays of other comuters |
US5649104A (en) | 1993-03-19 | 1997-07-15 | Ncr Corporation | System for allowing user of any computer to draw image over that generated by the host computer and replicating the drawn image to other computers |
US5761419A (en) | 1993-03-19 | 1998-06-02 | Ncr Corporation | Remote collaboration system including first program means translating user inputs into annotations and running on all computers while second program means runs on one computer |
US5819038A (en) | 1993-03-19 | 1998-10-06 | Ncr Corporation | Collaboration system for producing copies of image generated by first program on first computer on other computers and annotating the image by second program |
US8457545B2 (en) | 1994-04-07 | 2013-06-04 | Online News Link Llc | Information distribution and processing system |
US7508789B2 (en) | 1994-04-07 | 2009-03-24 | Data Innovation Llc | Information distribution and processing system |
US5577188A (en) | 1994-05-31 | 1996-11-19 | Future Labs, Inc. | Method to provide for virtual screen overlay |
US7181758B1 (en) | 1994-07-25 | 2007-02-20 | Data Innovation, L.L.C. | Information distribution and processing system |
US6295530B1 (en) | 1995-05-15 | 2001-09-25 | Andrew M. Ritchie | Internet service of differently formatted viewable data signals including commands for browser execution |
US6826565B2 (en) | 1995-05-15 | 2004-11-30 | Ablaise Limited | Method and apparatus for serving files to browsing clients |
US6216133B1 (en) | 1995-06-09 | 2001-04-10 | U.S. Phi,Ips Corporation | Method for enabling a user to fetch a specific information item from a set of information items, and a system for carrying out such a method |
US5715450A (en) | 1995-09-27 | 1998-02-03 | Siebel Systems, Inc. | Method of selecting and presenting data from a database using a query language to a user of a computer system |
US5831610A (en) | 1996-02-23 | 1998-11-03 | Netsuite Development L.P. | Designing networks |
US5821937A (en) | 1996-02-23 | 1998-10-13 | Netsuite Development, L.P. | Computer method for updating a network design |
US6604117B2 (en) | 1996-03-19 | 2003-08-05 | Siebel Systems, Inc. | Method of maintaining a network of partially replicated database system |
US6189011B1 (en) | 1996-03-19 | 2001-02-13 | Siebel Systems, Inc. | Method of maintaining a network of partially replicated database system |
US6178425B1 (en) | 1997-02-26 | 2001-01-23 | Siebel Systems, Inc. | Method of determining the visibility to a remote database client of a plurality of database transactions using simplified visibility rules |
US6216135B1 (en) | 1997-02-26 | 2001-04-10 | Siebel Systems, Inc. | Method of determining visibility to a remote database client of a plurality of database transactions having variable visibility strengths |
US6092083A (en) | 1997-02-26 | 2000-07-18 | Siebel Systems, Inc. | Database management system which synchronizes an enterprise server and a workgroup user client using a docking agent |
US6233617B1 (en) | 1997-02-26 | 2001-05-15 | Siebel Systems, Inc. | Determining the visibility to a remote database client |
US6684438B2 (en) | 1997-02-26 | 2004-02-03 | Siebel Systems, Inc. | Method of using cache to determine the visibility to a remote database client of a plurality of database transactions |
US6446089B1 (en) | 1997-02-26 | 2002-09-03 | Siebel Systems, Inc. | Method of using a cache to determine the visibility to a remote database client of a plurality of database transactions |
US6367077B1 (en) | 1997-02-27 | 2002-04-02 | Siebel Systems, Inc. | Method of upgrading a software application in the presence of user modifications |
US20020129352A1 (en) | 1997-02-27 | 2002-09-12 | Brodersen Robert A. | Method and apparatus for upgrading a software application in the presence of user modifications |
US6266669B1 (en) | 1997-02-28 | 2001-07-24 | Siebel Systems, Inc. | Partially replicated distributed database with multiple levels of remote clients |
US6754681B2 (en) | 1997-02-28 | 2004-06-22 | Siebel Systems, Inc. | Partially replicated distributed database with multiple levels of remote clients |
US6405220B1 (en) | 1997-02-28 | 2002-06-11 | Siebel Systems, Inc. | Partially replicated distributed database with multiple levels of remote clients |
US6324693B1 (en) | 1997-03-12 | 2001-11-27 | Siebel Systems, Inc. | Method of synchronizing independently distributed software and database schema |
US5983227A (en) | 1997-06-12 | 1999-11-09 | Yahoo, Inc. | Dynamic page generator |
US6169534B1 (en) | 1997-06-26 | 2001-01-02 | Upshot.Com | Graphical user interface for customer information management |
US5918159A (en) | 1997-08-04 | 1999-06-29 | Fomukong; Mundi | Location reporting satellite paging system with optional blocking of location reporting |
US6560461B1 (en) | 1997-08-04 | 2003-05-06 | Mundi Fomukong | Authorized location reporting paging system |
US5873096A (en) | 1997-10-08 | 1999-02-16 | Siebel Systems, Inc. | Method of maintaining a network of partially replicated database system |
US6236978B1 (en) | 1997-11-14 | 2001-05-22 | New York University | System and method for dynamic profiling of users in one-to-one applications |
US7603331B2 (en) | 1997-11-14 | 2009-10-13 | New York University | System and method for dynamic profiling of users in one-to-one applications and for validating user rules |
US8103611B2 (en) | 1997-11-14 | 2012-01-24 | New York University | Architectures, systems, apparatus, methods, and computer-readable medium for providing recommendations to users and applications using multidimensional data |
US7340411B2 (en) | 1998-02-26 | 2008-03-04 | Cook Rachael L | System and method for generating, capturing, and managing customer lead information over a computer network |
US6732111B2 (en) | 1998-03-03 | 2004-05-04 | Siebel Systems, Inc. | Method, apparatus, system, and program product for attaching files and other objects to a partially replicated database |
US6161149A (en) | 1998-03-13 | 2000-12-12 | Groupserve, Inc. | Centrifugal communication and collaboration method |
US8015495B2 (en) | 1998-03-13 | 2011-09-06 | Groupserve It Trust Llc | Centrifugal communication and collaboration method |
US5963953A (en) | 1998-03-30 | 1999-10-05 | Siebel Systems, Inc. | Method, and system for product configuration |
US20020082892A1 (en) | 1998-08-27 | 2002-06-27 | Keith Raffel | Method and apparatus for network-based sales force management |
US8150913B2 (en) | 1998-10-13 | 2012-04-03 | Chris Cheah | System for controlled distribution of user profiles over a network |
US8005896B2 (en) | 1998-10-13 | 2011-08-23 | Cheah Ip Llc | System for controlled distribution of user profiles over a network |
US6393605B1 (en) | 1998-11-18 | 2002-05-21 | Siebel Systems, Inc. | Apparatus and system for efficient delivery and deployment of an application |
US6549908B1 (en) | 1998-11-18 | 2003-04-15 | Siebel Systems, Inc. | Methods and apparatus for interpreting user selections in the context of a relation distributed as a set of orthogonalized sub-relations |
US6728960B1 (en) | 1998-11-18 | 2004-04-27 | Siebel Systems, Inc. | Techniques for managing multiple threads in a browser environment |
US6601087B1 (en) | 1998-11-18 | 2003-07-29 | Webex Communications, Inc. | Instant document sharing |
US6826745B2 (en) | 1998-11-30 | 2004-11-30 | Siebel Systems, Inc. | System and method for smart scripting call centers and configuration thereof |
US6665648B2 (en) | 1998-11-30 | 2003-12-16 | Siebel Systems, Inc. | State models for monitoring process |
US6850895B2 (en) | 1998-11-30 | 2005-02-01 | Siebel Systems, Inc. | Assignment manager |
US20050091098A1 (en) | 1998-11-30 | 2005-04-28 | Siebel Systems, Inc. | Assignment manager |
US6553563B2 (en) | 1998-11-30 | 2003-04-22 | Siebel Systems, Inc. | Development tool, method, and system for client server applications |
US8484111B2 (en) | 1998-12-18 | 2013-07-09 | Applications In Internet Time, Llc | Integrated change management unit |
US7356482B2 (en) | 1998-12-18 | 2008-04-08 | Alternative Systems, Inc. | Integrated change management unit |
US20020072951A1 (en) | 1999-03-03 | 2002-06-13 | Michael Lee | Marketing support database management method, system and program product |
US6574635B2 (en) | 1999-03-03 | 2003-06-03 | Siebel Systems, Inc. | Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components |
US20030120675A1 (en) | 1999-03-03 | 2003-06-26 | Siebel Systems, Inc. | Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers, objects, and components |
US6288717B1 (en) | 1999-03-19 | 2001-09-11 | Terry Dunkle | Headline posting algorithm |
US6907566B1 (en) | 1999-04-02 | 2005-06-14 | Overture Services, Inc. | Method and system for optimum placement of advertisements on a webpage |
US7100111B2 (en) | 1999-04-02 | 2006-08-29 | Overture Services, Inc. | Method and system for optimum placement of advertisements on a webpage |
US7373599B2 (en) | 1999-04-02 | 2008-05-13 | Overture Services, Inc. | Method and system for optimum placement of advertisements on a webpage |
US8095413B1 (en) | 1999-05-07 | 2012-01-10 | VirtualAgility, Inc. | Processing management information |
US7698160B2 (en) | 1999-05-07 | 2010-04-13 | Virtualagility, Inc | System for performing collaborative tasks |
US8275836B2 (en) | 1999-05-07 | 2012-09-25 | Virtualagility Inc. | System and method for supporting collaborative activity |
US8095594B2 (en) | 1999-05-07 | 2012-01-10 | VirtualAgility, Inc. | System for performing collaborative tasks |
US6411949B1 (en) | 1999-08-12 | 2002-06-25 | Koninklijke Philips Electronics N.V., | Customizing database information for presentation with media selections |
US6621834B1 (en) | 1999-11-05 | 2003-09-16 | Raindance Communications, Inc. | System and method for voice transmission over network protocols |
US7454509B2 (en) | 1999-11-10 | 2008-11-18 | Yahoo! Inc. | Online playback system with community bias |
US6535909B1 (en) | 1999-11-18 | 2003-03-18 | Contigo Software, Inc. | System and method for record and playback of collaborative Web browsing session |
US7644122B2 (en) | 1999-11-23 | 2010-01-05 | Frank Michael Weyer | Method apparatus and business system for online communications with online and offline recipients |
US6324568B1 (en) | 1999-11-30 | 2001-11-27 | Siebel Systems, Inc. | Method and system for distributing objects over a network |
US6604128B2 (en) | 1999-11-30 | 2003-08-05 | Siebel Systems, Inc. | Method and system for distributing objects over a network |
US20030187921A1 (en) | 1999-11-30 | 2003-10-02 | Siebel Systems, Inc. | Method and system for distributing objects over a network |
US6654032B1 (en) | 1999-12-23 | 2003-11-25 | Webex Communications, Inc. | Instant sharing of documents on a remote server |
US7668861B2 (en) | 2000-02-14 | 2010-02-23 | Yahoo! Inc. | System and method to determine the validity of an interaction on a network |
US6577726B1 (en) | 2000-03-31 | 2003-06-10 | Siebel Systems, Inc. | Computer telephony integration hotelling method and system |
US6609150B2 (en) | 2000-03-31 | 2003-08-19 | Siebel Systems, Inc. | Web client-server system and method for incompatible page markup and presentation languages |
US6336137B1 (en) | 2000-03-31 | 2002-01-01 | Siebel Systems, Inc. | Web client-server system and method for incompatible page markup and presentation languages |
US20020165742A1 (en) | 2000-03-31 | 2002-11-07 | Mark Robins | Feature centric release manager method and system |
US6732100B1 (en) | 2000-03-31 | 2004-05-04 | Siebel Systems, Inc. | Database access method and system for user role defined access |
US6434550B1 (en) | 2000-04-14 | 2002-08-13 | Rightnow Technologies, Inc. | Temporal updates of relevancy rating of retrieved information in an information search system |
US20010044791A1 (en) | 2000-04-14 | 2001-11-22 | Richter James Neal | Automated adaptive classification system for bayesian knowledge networks |
US6665655B1 (en) | 2000-04-14 | 2003-12-16 | Rightnow Technologies, Inc. | Implicit rating of retrieved information in an information search system |
US6842748B1 (en) | 2000-04-14 | 2005-01-11 | Rightnow Technologies, Inc. | Usage based strength between related information in an information retrieval system |
US6763501B1 (en) | 2000-06-09 | 2004-07-13 | Webex Communications, Inc. | Remote document serving |
US7069231B1 (en) | 2000-07-20 | 2006-06-27 | Oracle International Corporation | Methods and systems for defining, applying and executing customer care relationship plans |
US6768904B2 (en) | 2000-10-11 | 2004-07-27 | Lg Electronics Inc. | Data communication method using mobile terminal |
US6772229B1 (en) | 2000-11-13 | 2004-08-03 | Groupserve, Inc. | Centrifugal communication and collaboration method |
US20030018830A1 (en) | 2001-02-06 | 2003-01-23 | Mingte Chen | Adaptive communication application programming interface |
USD454139S1 (en) | 2001-02-20 | 2002-03-05 | Rightnow Technologies | Display screen for a computer |
US7603483B2 (en) | 2001-03-23 | 2009-10-13 | Cisco Technology, Inc. | Method and system for class-based management of dynamic content in a networked environment |
US20020140731A1 (en) | 2001-03-28 | 2002-10-03 | Pavitra Subramaniam | Engine to present a user interface based on a logical structure, such as one for a customer relationship management system, across a web site |
US20020143997A1 (en) | 2001-03-28 | 2002-10-03 | Xiaofei Huang | Method and system for direct server synchronization with a computing device |
US6829655B1 (en) | 2001-03-28 | 2004-12-07 | Siebel Systems, Inc. | Method and system for server synchronization with a computing device via a companion device |
US20030206192A1 (en) | 2001-03-31 | 2003-11-06 | Mingte Chen | Asynchronous message push to web browser |
US20030018705A1 (en) | 2001-03-31 | 2003-01-23 | Mingte Chen | Media-independent communication server |
US6732095B1 (en) | 2001-04-13 | 2004-05-04 | Siebel Systems, Inc. | Method and apparatus for mapping between XML and relational representations |
US20020162090A1 (en) | 2001-04-30 | 2002-10-31 | Parnell Karen P. | Polylingual simultaneous shipping of software |
US6782383B2 (en) | 2001-06-18 | 2004-08-24 | Siebel Systems, Inc. | System and method to implement a persistent and dismissible search center frame |
US6728702B1 (en) | 2001-06-18 | 2004-04-27 | Siebel Systems, Inc. | System and method to implement an integrated search center supporting a full-text search and query on a database |
US6711565B1 (en) | 2001-06-18 | 2004-03-23 | Siebel Systems, Inc. | Method, apparatus, and system for previewing search results |
US6763351B1 (en) | 2001-06-18 | 2004-07-13 | Siebel Systems, Inc. | Method, apparatus, and system for attaching search results |
US20030004971A1 (en) | 2001-06-29 | 2003-01-02 | Gong Wen G. | Automatic generation of data models and accompanying user interfaces |
US6826582B1 (en) | 2001-09-28 | 2004-11-30 | Emc Corporation | Method and system for using file systems for content management |
US20030159136A1 (en) | 2001-09-28 | 2003-08-21 | Huang Xiao Fei | Method and system for server synchronization with a computing device |
US20030066032A1 (en) | 2001-09-28 | 2003-04-03 | Siebel Systems,Inc. | System and method for facilitating user interaction in a browser environment |
US20030066031A1 (en) | 2001-09-28 | 2003-04-03 | Siebel Systems, Inc. | Method and system for supporting user navigation in a browser environment |
US6724399B1 (en) | 2001-09-28 | 2004-04-20 | Siebel Systems, Inc. | Methods and apparatus for enabling keyboard accelerators in applications implemented via a browser |
US20030070005A1 (en) | 2001-09-29 | 2003-04-10 | Anil Mukundan | Method, apparatus, and system for implementing view caching in a framework to support web-based applications |
US20030070000A1 (en) | 2001-09-29 | 2003-04-10 | John Coker | Computing system and method to implicitly commit unsaved data for a World Wide Web application |
US20030074418A1 (en) | 2001-09-29 | 2003-04-17 | John Coker | Method, apparatus and system for a mobile web client |
US20030070004A1 (en) | 2001-09-29 | 2003-04-10 | Anil Mukundan | Method, apparatus, and system for implementing a framework to support a web-based application |
US20030069936A1 (en) | 2001-10-09 | 2003-04-10 | Warner Douglas K. | Method for routing electronic correspondence based on the level and type of emotion contained therein |
US7062502B1 (en) | 2001-12-28 | 2006-06-13 | Kesler John N | Automated generation of dynamic data entry user interface for relational database management systems |
US7401094B1 (en) | 2001-12-28 | 2008-07-15 | Kesler John N | Automated generation of dynamic data entry user interface for relational database management systems |
US6804330B1 (en) | 2002-01-04 | 2004-10-12 | Siebel Systems, Inc. | Method and system for accessing CRM data via voice |
US20030151633A1 (en) | 2002-02-13 | 2003-08-14 | David George | Method and system for enabling connectivity to a data system |
US20030204427A1 (en) | 2002-03-29 | 2003-10-30 | Prasad Gune | User interface for processing requests for approval |
US20030189600A1 (en) | 2002-03-29 | 2003-10-09 | Prasad Gune | Defining an approval process for requests for approval |
US20030225730A1 (en) | 2002-06-03 | 2003-12-04 | Rightnow Technologies, Inc. | System and method for generating a dynamic interface via a communications network |
US6850949B2 (en) | 2002-06-03 | 2005-02-01 | Right Now Technologies, Inc. | System and method for generating a dynamic interface via a communications network |
US20040001092A1 (en) | 2002-06-27 | 2004-01-01 | Rothwein Thomas M. | Prototyping graphical user interfaces |
US20040015981A1 (en) | 2002-06-27 | 2004-01-22 | Coker John L. | Efficient high-interactivity user interface for client-server applications |
US20040027388A1 (en) | 2002-06-27 | 2004-02-12 | Eric Berg | Method and apparatus to facilitate development of a customer-specific business process model |
US20040010489A1 (en) | 2002-07-12 | 2004-01-15 | Rightnow Technologies, Inc. | Method for providing search-specific web pages in a network computing environment |
US20040128001A1 (en) | 2002-08-28 | 2004-07-01 | Levin Issac Stephen | Method and apparatus for an integrated process modeller |
US7069497B1 (en) | 2002-09-10 | 2006-06-27 | Oracle International Corp. | System and method for applying a partial page change |
US20040186860A1 (en) | 2003-03-21 | 2004-09-23 | Wen-Hsin Lee | Method and architecture for providing data-change alerts to external applications via a push service |
US20040199536A1 (en) | 2003-03-24 | 2004-10-07 | Barnes Leon Maria Theresa | Product common object |
US7406501B2 (en) | 2003-03-24 | 2008-07-29 | Yahoo! Inc. | System and method for instant messaging using an e-mail protocol |
US20040249854A1 (en) | 2003-03-24 | 2004-12-09 | Barnes-Leon Maria Theresa | Common common object |
US20040199489A1 (en) | 2003-03-24 | 2004-10-07 | Barnes-Leon Maria Theresa | Custom common object |
US20040193510A1 (en) | 2003-03-25 | 2004-09-30 | Catahan Nardo B. | Modeling of order data |
US20040199543A1 (en) | 2003-04-04 | 2004-10-07 | Braud Luke A. | Facilitating data manipulation in a browser-based user interface of an enterprise business application |
US7412455B2 (en) | 2003-04-30 | 2008-08-12 | Dillon David M | Software framework that facilitates design and implementation of database applications |
US20080249972A1 (en) | 2003-04-30 | 2008-10-09 | Dillon David M | Software framework that facilitates design and implementation of database applications |
US7620655B2 (en) | 2003-05-07 | 2009-11-17 | Enecto Ab | Method, device and computer program product for identifying visitors of websites |
US20040268312A1 (en) * | 2003-05-30 | 2004-12-30 | International Business Machines Corporation | Application development support, component invocation monitoring, and data processing |
US20040260534A1 (en) | 2003-06-19 | 2004-12-23 | Pak Wai H. | Intelligent data search |
US20040260659A1 (en) | 2003-06-23 | 2004-12-23 | Len Chan | Function space reservation system |
US20040268299A1 (en) | 2003-06-30 | 2004-12-30 | Shu Lei | Application user interface template with free-form layout |
US20050050555A1 (en) | 2003-08-28 | 2005-03-03 | Exley Richard Mark | Universal application network architecture |
US7599935B2 (en) | 2004-01-29 | 2009-10-06 | Yahoo! Inc. | Control for enabling a user to preview display of selected content based on another user's authorization level |
US7269590B2 (en) | 2004-01-29 | 2007-09-11 | Yahoo! Inc. | Method and system for customizing views of information associated with a social network user |
US7779039B2 (en) | 2004-04-02 | 2010-08-17 | Salesforce.Com, Inc. | Custom entities and fields in a multi-tenant database system |
US7289976B2 (en) | 2004-12-23 | 2007-10-30 | Microsoft Corporation | Easy-to-use data report specification |
US7747648B1 (en) | 2005-02-14 | 2010-06-29 | Yahoo! Inc. | World modeling using a relationship network with communication channels to entities |
US20120233137A1 (en) | 2006-05-01 | 2012-09-13 | Gabriel Jakobson | Presentation of document history in a web browsing application |
US8209308B2 (en) | 2006-05-01 | 2012-06-26 | Rueben Steven L | Method for presentation of revisions of an electronic document |
US8566301B2 (en) | 2006-05-01 | 2013-10-22 | Steven L. Rueben | Document revisions in a collaborative computing environment |
US7853881B1 (en) | 2006-07-03 | 2010-12-14 | ISQ Online | Multi-user on-line real-time virtual social networks based upon communities of interest for entertainment, information or e-commerce purposes |
US7779475B2 (en) | 2006-07-31 | 2010-08-17 | Petnote Llc | Software-based method for gaining privacy by affecting the screen of a computing device |
US7827208B2 (en) | 2006-08-11 | 2010-11-02 | Facebook, Inc. | Generating a feed of stories personalized for members of a social network |
US8095531B2 (en) | 2006-10-03 | 2012-01-10 | Salesforce.Com, Inc. | Methods and systems for controlling access to custom objects in a database |
US7730478B2 (en) | 2006-10-04 | 2010-06-01 | Salesforce.Com, Inc. | Method and system for allowing access to developed applications via a multi-tenant on-demand database service |
US7945653B2 (en) | 2006-10-11 | 2011-05-17 | Facebook, Inc. | Tagging digital media |
US8082301B2 (en) | 2006-11-10 | 2011-12-20 | Virtual Agility, Inc. | System for supporting collaborative activity |
US20120290407A1 (en) | 2007-01-19 | 2012-11-15 | Hubbard Sid Ja | Selection of keyword phrases for providing contextually relevant content to users |
US8209333B2 (en) | 2007-01-19 | 2012-06-26 | Wordnetworks, Inc. | System for using keyword phrases on a page to provide contextually relevant content to users |
US8073850B1 (en) | 2007-01-19 | 2011-12-06 | Wordnetworks, Inc. | Selecting key phrases for serving contextually relevant content |
US20090063415A1 (en) | 2007-08-31 | 2009-03-05 | Business Objects, S.A. | Apparatus and method for dynamically selecting componentized executable instructions at run time |
US20090100342A1 (en) | 2007-10-12 | 2009-04-16 | Gabriel Jakobson | Method and system for presenting address and mapping information |
US20090177744A1 (en) | 2008-01-04 | 2009-07-09 | Yahoo! Inc. | Identifying and employing social network relationships |
US20140359537A1 (en) | 2008-02-01 | 2014-12-04 | Gabriel Jackobson | Online advertising associated with electronic mapping systems |
US8490025B2 (en) | 2008-02-01 | 2013-07-16 | Gabriel Jakobson | Displaying content associated with electronic mapping systems |
US8504945B2 (en) | 2008-02-01 | 2013-08-06 | Gabriel Jakobson | Method and system for associating content with map zoom function |
US8014943B2 (en) | 2008-05-08 | 2011-09-06 | Gabriel Jakobson | Method and system for displaying social networking navigation information |
US8032297B2 (en) | 2008-05-08 | 2011-10-04 | Gabriel Jakobson | Method and system for displaying navigation information on an electronic map |
US8646103B2 (en) | 2008-06-30 | 2014-02-04 | Gabriel Jakobson | Method and system for securing online identities |
US8510664B2 (en) | 2008-09-06 | 2013-08-13 | Steven L. Rueben | Method and system for displaying email thread information |
US20130247216A1 (en) | 2008-11-03 | 2013-09-19 | Salesforce.Com, Inc | System, method and computer program product for publicly providing web content of a tenant using a multi-tenant on-demand database service |
US8510045B2 (en) | 2009-12-22 | 2013-08-13 | Steven L. Rueben | Digital maps displaying search-resulting points-of-interest in user delimited regions |
US20160212073A1 (en) * | 2009-12-22 | 2016-07-21 | Cyara Solutions Pty Ltd | System and method for automated end-to-end web interaction testing |
US20110218958A1 (en) | 2010-03-08 | 2011-09-08 | Salesforce.Com, Inc. | System, method and computer program product for performing one or more actions utilizing a uniform resource locator |
US20110247051A1 (en) | 2010-04-01 | 2011-10-06 | Salesforce.Com, Inc. | System, method and computer program product for performing one or more actions based on a determined access permissions for a plurality of users |
US20120042218A1 (en) | 2010-08-13 | 2012-02-16 | Salesforce.Com, Inc. | Debugging site errors by an admin as a guest user in a multi-tenant database environment |
US20120198351A1 (en) * | 2011-01-31 | 2012-08-02 | Oracle International Corporation | Automatically Testing a Web Application That Has Independent Display Trees |
US8572505B2 (en) * | 2011-01-31 | 2013-10-29 | Oracle International Corporation | Automatically testing a web application that has independent display trees |
US9720811B2 (en) * | 2011-06-29 | 2017-08-01 | Red Hat, Inc. | Unified model for visual component testing |
US20130086560A1 (en) * | 2011-09-30 | 2013-04-04 | International Business Machines Corporation | Processing automation scripts of software |
US20130212497A1 (en) | 2012-02-10 | 2013-08-15 | Liveperson, Inc. | Analytics driven engagement |
US20130218966A1 (en) | 2012-02-17 | 2013-08-22 | Gabriel Jakobson | Collaborative web browsing system having document object model element interaction detection |
US20130218949A1 (en) | 2012-02-17 | 2013-08-22 | Gabriel Jakobson | Collaborative web browsing system integrated with social networks |
US20130218948A1 (en) | 2012-02-17 | 2013-08-22 | Gabriel Jakobson | Variable speed collaborative web browsing system |
US20150007050A1 (en) | 2013-07-01 | 2015-01-01 | Gabriel Jakobson | Method and system for processing and displaying email thread information |
US20150006289A1 (en) | 2013-07-01 | 2015-01-01 | Gabriel Jakobson | Advertising content in regions within digital maps |
US20150095162A1 (en) | 2013-09-27 | 2015-04-02 | Gabriel Jakobson | Method and systems for online advertising to users using fictitious user idetities |
US20150142596A1 (en) | 2013-11-18 | 2015-05-21 | Gabriel Jakobson | Commercial transactions via a wearable computer with a display |
US20150172563A1 (en) | 2013-12-18 | 2015-06-18 | Gabriel Jakobson | Incorporating advertising content into a digital video |
US20170004064A1 (en) * | 2015-06-30 | 2017-01-05 | Sap Se | Actions test automation |
US20180137035A1 (en) * | 2016-11-15 | 2018-05-17 | Accenture Global Solutions Limited | Simultaneous multi-platform testing |
Non-Patent Citations (3)
Title |
---|
"Google Plus Users", Google+Ripples, Oct. 31, 2011 [retrieved on Feb. 21, 2012 from Internet at http://www.googleplusers.com/google-ripples.html], 3 pages. |
Giuseppe Antonio Di Lucca et al.; Testing Web Applications; IEEE; pp. 310-319; retrieved on Oct. 20, 2020 (Year: 2002). * |
William G.J. Halfond et al.; Precise Interface Identification to Improve Testing and Analysis of Web Applications; ACM; pp. 285-295; retrieved on Oct. 20, 2020 (Year: 2009). * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11490432B1 (en) | 2021-05-28 | 2022-11-01 | T-Mobile Usa, Inc. | Unified query tool for network function virtualization architecture |
US11509704B1 (en) * | 2021-05-28 | 2022-11-22 | T-Mobile Usa. Inc. | Product validation based on simulated enhanced calling or messaging communications services in telecommunications network |
US11546243B1 (en) | 2021-05-28 | 2023-01-03 | T-Mobile Usa, Inc. | Unified interface and tracing tool for network function virtualization architecture |
US11770323B2 (en) | 2021-05-28 | 2023-09-26 | T-Mobile Usa, Inc. | Unified interface and tracing tool for network function virtualization architecture |
US11811844B2 (en) | 2021-05-28 | 2023-11-07 | T-Mobile Usa, Inc. | Product validation based on simulated enhanced calling or messaging communications services in telecommunications network |
US11849492B2 (en) | 2021-05-28 | 2023-12-19 | T-Mobile Usa, Inc. | Unified query tool for network function virtualization architecture |
Also Published As
Publication number | Publication date |
---|---|
US20190235998A1 (en) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10936477B2 (en) | End-to-end user interface component testing | |
US11137883B2 (en) | Leveraging and managing assessment environments in an assessment hub | |
US10339126B2 (en) | Processing log files using a database system | |
US8620305B2 (en) | Methods and systems for a mobile device testing framework | |
US9753703B2 (en) | Generating identifiers for user interface elements of a web page of a web application | |
US10332129B2 (en) | Methods and systems for processing a log file | |
US8713530B2 (en) | Test framework of visual components in a multitenant database environment | |
US8407184B2 (en) | Maintaining applications that are occasionally connected to an online services system | |
US20170249393A1 (en) | Method and browser plugin for creation of objects in a cloud-based object management system | |
US11496434B2 (en) | Facilitating integration of collaborative communication platform and document collaboration tool | |
US11748243B2 (en) | Intelligent generation of page objects for user interface testing | |
US11430346B2 (en) | Systems and methods for validating localized assessments in an external system | |
US11138228B2 (en) | Org sync async subscribe emails | |
US11636025B2 (en) | Intelligent generation of automated user interface testing methods | |
US11693675B2 (en) | Targeting system for web page components | |
US11841872B2 (en) | Interactively building previews of extract, transform, load (ETL) graphs using cached previews of subgraphs | |
US12093727B2 (en) | Process flow builder customization | |
US8682637B2 (en) | System, method and computer program product for comparing results of performing a plurality of operations with results of simulating the plurality of operations | |
US20220326822A1 (en) | Process flow builder customization | |
US11841847B2 (en) | Declarative transaction control | |
US11601331B1 (en) | Dynamic hardware configuration | |
US20230133878A1 (en) | Software development tool and systems | |
US20230177038A1 (en) | Decision-based sequential report generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SALESFORCE.COM, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FISHER, HUI S.;REEL/FRAME:044790/0033 Effective date: 20180131 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SALESFORCE, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:SALESFORCE.COM, INC.;REEL/FRAME:069717/0318 Effective date: 20220325 |